Page 1 of 1

Inegalitate simetrica cu logaritmi

Posted: Tue Oct 30, 2007 6:25 pm
by Cezar Lupu
Fie numerele reale \( a, b, c \) astfel incat \( a, b, c>1 \) sau \( a, b, c\in (0,1) \). Sa se arate ca

\( \log_{a}bc+\log_{b}ca+\log_{c}ab\geq 4\left(\log_{ab}c+\log_{bc}a+\log_{ca}\right). \)


etapa judeteana, 2007, problema 1

Posted: Wed Oct 31, 2007 4:17 pm
by Wizzy
Daca notam \( \log a=x ,\log b=y ,\log c=z \) (unde \( log \) are baza \( d \) care se afla in acelasi interval cu \( a,b,c \) astfel incat \( x,y,z \) sa fie pozitive) inegalitatea se rescrie sub forma echivalenta:

\( \displaystyle\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z} \geq 4 \left( \frac{z}{x+y}+\frac{y}{z+x}+\frac{x}{y+z} \right) \).

Folosind inegalitatea \( \frac {1}{x}+\frac{1}{y}\geq \frac{4}{x+y} \) rezulta concluzia.