Page 1 of 1

Inegalitati (geometrica/algebrica) conditionate

Posted: Sun Jun 14, 2009 3:25 pm
by Virgil Nicula
1. Sa se arate ca intr-un triunghi \( A \)-dreptunghic \( ABC \) avem \( \overline{\underline{\left\|\ h_a+\max\{b,c\}\le \frac {3a\sqrt 3}{4}\ \right\|}} \) (Virgil Nicula).

2. Fie numerele pozitive \( x \), \( y \), \( z \), \( t \) pentru care \( x^2+y^2=z^2+t^2=1 \).

Sa se arate ca \( xz\ +\ yt\ +\ \max\ \{\ x+t\ ,\ y+z\ \}\ \le\ \frac {3\sqrt 3}{2} \) (Virgil Nicula).

Incercati si o interpretare/solutie geometrica !

Posted: Thu Jun 18, 2009 3:48 pm
by Mateescu Constantin
1. Presupunem ca \( b=\max\{b,\ c\} \) si fie \( D=\mbox{sim_{BC}A} \).
In \( \triangle ACD \) aplicam inegalitatea lui Mitrinovic si avem:

\( \frac{AD+DC+CA}{2}\le \frac{3\sqrt{3}}{2}R_{ADC}\Longleftrightarrow \frac{2h_a+2b}{2}\le \frac{3\sqrt{3}}{2}\cdot\frac{a}{2}\Longleftrightarrow h_a+\max\{b,\ c\}\le \frac{3a\sqrt{3}}{4} \).

Posted: Fri Jun 19, 2009 2:43 am
by Virgil Nicula
Foarte frumos, asta-i si calea pe care am compus-o. Exista si alte solutii
frumoase, algebrice/trigonometrice pe care le astept. Si a doua problema ?!