Page 1 of 1
Inegalitate cu parti fractionare
Posted: Tue Jun 16, 2009 11:12 am
by Marius Mainea
a) Demonstraţi că , oricare ar fi numarul pozitiv a,\( \{a\}+\{\frac{1}{a}\}<\frac{3}{2} \) .
b) Dati exemplu de un numar real a cu proprietatea ca \( \{a\}+\{\frac{1}{a}\}=1 \)
Kvant,nr.3/1986
Posted: Tue Jun 16, 2009 11:39 am
by Laurian Filip
a)
-pentru \( a \in \(0, \frac{1}{2}\) \), \( \lbrace a \rbrace < \frac{1}{2} \) de unde \( \lbrace a \rbrace +\{ \frac{1}{a} \} <\frac{3}{2} \)
-pentru \( a=\frac{1}{2} \) , \( \lbrace a \rbrace +\{ \frac{1}{a}\}=\frac{1}{2} \)
-pentru \( a\in \(\frac{1}{2},1\) \),
\( \lbrace a \rbrace +\lbrace \frac{1}{a}\rbrace = a+\frac{1}{a} - [a]-\left[\frac{1}{a}\right]=a+\frac{1}{a}-0-1 \)
\( (2a-1)(a-2)<0 \to \ 2a^2-5a+2<0 \ \to \ a+\frac{1}{a}<\frac{5}{2} \)
deci \( \lbrace a \rbrace +\{ \frac{1}{a}\} <\frac{3}{2} \)
-pentru \( a=1 \) evident suma da 0
Asadar pt \( a \in (0,1] \) relatia este adevarata
pentr \( a>1 \), notam \( t=\frac{1}{a} \) \( \to \) \( t\in (0,1) \)
deci \( \lbrace t \rbrace+ \{\frac{1}{t}\}< \frac{3}{2} \)
b) pentru ca \( \{a\} + \{ \frac{1}{a} \} \) sa fie natural, si \( a+\frac{1}{a} \) trebuie sa fie natural.
incercam \( a+\frac{1}{a}=3 \)
obtinem \( a=\frac{3-\sqrt{5}}{2} \) care verifica relatia.
Posted: Tue Jun 16, 2009 11:45 am
by alex2008
b)\( a+\frac{1}{a}=\lfloor a\rfloor +\lfloor \frac{1}{a}\rfloor +\{a\}+\left\{\frac{1}{a}\right\}=\lfloor a\rfloor +\lfloor \frac{1}{a}\rfloor+1=n\in \mathbb{Z}\Rightarrow a^2-na+1=0\Rightarrow a=\frac{n\pm \sqrt{n^2-4}}{2} \)
Scuze .
Posted: Tue Jun 16, 2009 1:05 pm
by mihai++
Alex, am si eu o intrebare: tu intelegi ceva din solutia ta?