Page 1 of 1

Ecuatie trigonometrica

Posted: Fri Jun 19, 2009 10:11 pm
by Mateescu Constantin
Sa se rezolve ecuatia: \( \sin x\cdot \sin y\cdot \sin z+\cos x\cdot \cos y\cdot \cos z=1 \).

Concursul Victor Valcovici, 2001

Posted: Fri Jun 19, 2009 11:04 pm
by Marius Mainea
Deoarece \( 1=|\sin x\sin y\sin z+\cos x\cos y\cos z|\le |\sin x\sin y|+|\cos x\cos y|=\pm \cos(x\pm y)\le1 \) si analoagele rezulta ca fiecare sinus si cosinus trebuie sa fie 0 , 1 sau -1.

Deasemenea cel putin unul trebuie sa fie 0.
De exemplu, daca \( \sin x=0 \) ,\( \cos x=\cos y=\cos z=1 \) adica \( x,y,z\in\{2k\pi\} , k\in\mathbb{Z} \)

sau \( x,y\in\{(2k+1)\pi\}, z\in\{2k\pi\},k\in\mathbb{Z} \) si permutari circulare.

Daca \( \cos x=0 \) atunci \( x,y,z\in\{\frac{(4k+1)\pi}{2}\},k\in\mathbb{Z} \) sau \( x,y\in\{\frac{(4k+3)\pi}{2}\},z\in\{\frac{(4k+1)\pi}{2}\},k\in\mathbb{Z} \) si permutari circulare.