Doua inegalitati pentru numere pozitive a, b, c

Moderators: Bogdan Posa, Laurian Filip

Post Reply
User avatar
Andi Brojbeanu
Bernoulli
Posts: 294
Joined: Sun Mar 22, 2009 6:31 pm
Location: Targoviste (Dambovita)

Doua inegalitati pentru numere pozitive a, b, c

Post by Andi Brojbeanu »

1 Fie \( p, q \) numere reale pozitive astfel incat \( p+q=1 \). Sa se arate ca:
\( \frac{a}{pb+qc}+\frac{b}{pc+qa}+\frac{c}{pa+qb}\geq 3 \), oricare ar fi numerele pozitive a, b, c.
2. Fie \( a, b, c \) numere pozitive. Sa se arate ca:
\( (a^3+1)(b^3+1)(c^3+1)\geq (a^2b+1)(b^2c+1)(c^2a+1). \)
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Post by alex2008 »

1)Folosim Cauchy-Schwartz si inegalitatea devine \( (a+b+c)^2\ge 3(ab+bc+ca) \)

2)Solutia 1. Presupunem \( a\le b\le c \) si avem ca :

\(
(a^3+1)(b^3+1)\ge (a^2b+1)(b^2a+1)\Leftrightarrow (a-b)^2(a+b)\ge 0 \)


Deci ramane de demonstrat ca : \( (b^2a+1)(c^3+1)\ge (b^2c+1)(c^2a+1)\Leftrightarrow (c-a)(c-b)(c+b)\ge0 \)
. A snake that slithers on the ground can only dream of flying through the air.
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Post by alex2008 »

2)Solutia 2.Demonstram ca :

\( (a^3+1)^2(b^3+1)\ge (a^2b+1)^3\Leftrightarrow a^6+2a^3+2a^3b^3+b^3\ge 3a^4b^2+3a^2b \) , care rezulta din \( AM-GM \) :

\( a^3+a^3+b^3\ge 3a^2b \)

\( a^6+a^3b^3+a^3b^3\ge 3a^4b^2 \)
. A snake that slithers on the ground can only dream of flying through the air.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Solutia 3) (o alta interpretare a solutiei 2)

Folosim inegalitatea lui Holder:

\( (a^2b+1)^3=(a\cdot a\cdot b+1\cdot 1\cdot 1)^3\le(a^3+1)(a^3+1)(b^3+1) \) si inca doua relatii analoage.

Le inmultim apoi si gata.
Post Reply

Return to “Clasa a VII-a”