Page 1 of 1

Inegalitate nice

Posted: Sat Jul 11, 2009 11:38 pm
by Claudiu Mindrila
a) \( x,\ y\in\left(0,\ \infty\right),\ xy=1\Longrightarrow4+x^{2}+y^{2}\ge3\left(x+y\right) \)

b) \( a,\ b,\ c,\ d\in\left(0,\ \infty\right), \ abcd=1 \Longrightarrow8+\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)\ge3\left(a+b\right)\left(c+d\right) \)

Andrei Eckstein

Posted: Sun Jul 12, 2009 12:42 am
by Mateescu Constantin
a) Fie \( s=x+y \). Avem de aratat ca \( s^2-3s+2\ge 0 \) sau \( (s-1)(s-2)\ge 0 \), adevarat, deoarece \( s\ge 2 \).

b) Fie \( x=ac,\ y=bd,\ z=ad,\ t=bc \).
Aplicand inegalitatea de la a) obtinem \( 4+x^2+y^2+4+z^2+t^2\ge 3(x+y+z+t)=3(a+b)(c+d) \)

Posted: Sun Jul 12, 2009 2:47 pm
by alex2008
b) Cu \( bc=x\ ,\ ca=y \), inegalitatea e echivalenta cu :

\( \frac {(x - 1)^2(x^2 - x + 1)}{x^2} + \frac {(y - 1)^2(y^2 - y + 1)}{y^2} \ge 0 \)