Page 1 of 1

Conditionata cu produs

Posted: Sun Aug 02, 2009 12:03 pm
by Marius Mainea
Fie \( x,y,z\in (0,\infty) \) astfel incat 3xyz=1. Aartati ca :

\( \frac{3xy^3}{3x^4+y+z}+\frac{3yz^3}{3y^4+z+x}+\frac{3zx^3}{3z^4+x+y}\ge 1 \)

Gh. Ivancev& L.Tutescu

Posted: Mon Aug 03, 2009 11:15 pm
by opincariumihai
Cum \( 3xyz=1 \) obtinem \( \frac{3xy^3}{3x^4+y+z}=\frac{y^3}{x^3+y^2z+yz^2}\geq\frac{y^3}{x^3+y^3+z^3} \) si analoagele care insumate duc la inegalitatea propusa .