Conditionata cu produs
Posted: Sun Aug 02, 2009 12:03 pm
Fie \( x,y,z\in (0,\infty) \) astfel incat 3xyz=1. Aartati ca :
\( \frac{3xy^3}{3x^4+y+z}+\frac{3yz^3}{3y^4+z+x}+\frac{3zx^3}{3z^4+x+y}\ge 1 \)
Gh. Ivancev& L.Tutescu
\( \frac{3xy^3}{3x^4+y+z}+\frac{3yz^3}{3y^4+z+x}+\frac{3zx^3}{3z^4+x+y}\ge 1 \)
Gh. Ivancev& L.Tutescu