Page 1 of 1
Inegalitate geometrica 5
Posted: Mon Aug 17, 2009 11:04 am
by Marius Mainea
Daca \( d_a,d_b,d_c \) sunt distantele de la un punct P situat in interiorul unui triunghi ABC la laturile acestuia atunci
\( d_ah^2_
a + d_bh^2_b
+ d_ch^2_c \ge
(d_a + d_b + d_c)^3 \)
M.R. 4/2009
Posted: Sun Sep 20, 2009 9:43 am
by Marian Dinca
\( \mbox{Notam cu: } x=S_{PBC}, y=S_{PCA}, z=S_{PAB}.\\
\mbox{Cu aceste notatii au loc relatiile: } ad_a=2x, \ bd_b=2y, \ cd_c=2z \mbox{ si } ah_a+bh_b+ch_c=2(x+y+z). \\
\mbox{Asa ca inegalitatea de demonstrat este echivalenta in mod succesiv cu: }\\
\sum{d_ah_a^2\ge \left(\sum{d_a}\right)^3\Leftrightarrow \sum{\frac{x(x+y+z)^2}{a^3}\ge \left(\frac{x}{a}\right)^3.\ \ (1) \)
\(
\mbox{Luand acum: }\\
\frac{x}{x+y+z}=\lambda_1,\ \frac{y}{x+y+z}=\lambda_2,\ \frac{z}{x+y+z}=\lambda_3\Rightarrow \sum_{i=1}^3=1 \mbox{ asa ca avem: }
(1)\Leftrightarrow \sum {\frac{\lambda_1}{a^3}}\ge \left(\sum{\frac{\lambda_1}{a}\right)^3.\ \ (2)\\
\mbox{Aplicand insa inegalitatea lui Jensen la functia convexa } f(x)=x^3 \mbox{, avem:}\\
\lambda_1f(x)+\lambda_2f(y)+\lambda_3f(z)\ge (\lambda_1+\lambda_2+\lambda_3)f\left(\frac{\sum{\lambda_1x}}{\sum{\lambda_1}}\right) \mbox{, in care luand } x=\frac{1}{a},\ y=\frac{1}{b}, \ z=\frac{1}{c} \mbox{ si } \lambda_1+\lambda_2+\lambda_3=1, \\
\mbox{obtinem inegalitatea }(2).
\)
Are loc si urmatoarea ANALOAGA SPATIALA:
\( \mbox{Fie ABCD un tetraedru oarecare si P un punct arbitrar din interiorul sau.}\\
\mbox{Notand cu }d_a, \ d_b, \ d_c,\ d_d \mbox{ distantele punctului P la fetele opuse varfurilor A, B, C si respectiv D iar cu }\\
h_a,\ h_b,\ h_c,\ h_d \mbox{ lungimile inaltimilor, are loc inegalitatea (cu mult mai tare): }\\
\sum{d_ah_a^p}\ge\left(\sum{d_a)^{p+1};\ (\forall)p\in [0;\infty). \)
Posted: Wed Sep 23, 2009 2:52 pm
by Claudiu Mindrila
Ambele probleme (cea propusa initial si analoaga spatiala oferita de dl. Marian Dinca) au o solutie asemanatoare. In cele ce urmeaza voi oferi solutia problemei in spatiu, problema din plan putand fi astfel dedusa cu usurinta.
Reamintesc intai urmatoarea teorema:
Teorema(Holder): Pentru \( m \) secvente de numere reale pozitive \( \left(a_{1,1},a_{1,2},\ldots,a_{,1,n}\right),\:\left(a_{2,1},a_{2,2},\ldots,a_{2,n}\right),\ldots,\left(a_{m,1},a_{m,2},\ldots,a_{m,n}\right) \) avem ca:
\( \prod_{i=1}^{m}\left(\sum_{j=1}^{n}a_{i,j}\right)\ge\left(\sum_{j=1}^{n}\sqrt[m]{\prod_{j=1}^{n}a_{i,j}}\right) \).
Aceasta teorema se demonstreaza usor utilizand inegalitatea dintre media aritmetica si cea geometrica(exercitiu).
Dem.(problema din spatiu) Sa remarcam intai ca \( \frac{d_{a}}{h_{a}}=\frac{d_{a}\cdot S_{BCD}}{h_{a}\cdot S_{BCD}}=\frac{V_{PBCD}}{V_{ABCD}}\Longrightarrow\sum_{cyc}\frac{d_{a}}{h_{a}}=\sum_{cyc}\frac{V_{PBCD}}{V_{ABCD}}=1 \). Acum, cu inegalitatea Holder, avem:
\( \left(\sum_{cyc}d_{a}h_{a}^{p}\right)\cdot\underbrace{\left(\sum_{cyc}\frac{d_{a}}{h_{a}}\right)\cdot\dots\cdot\left(\sum_{cyc}\frac{d_{a}}{h_{a}}\right)}_{\text{de p ori}}\ge\left(\sum_{cyc}\sqrt[p+1]{a^{p+1}}\right)^{p+1}=\left(\sum_{cyc}a\right)^{p+1} \), care este adevarata.