Inegalitate geometrica

Post Reply
User avatar
nica
Euclid
Posts: 17
Joined: Mon Oct 22, 2007 10:34 pm
Location: Craiova , Stoenesti sau Farcasele

Inegalitate geometrica

Post by nica »

Sa se arate ca in orice triunghi are loc inegalitatea: \( R+r\geq\frac{\ r_ar_b+r_br_c+r_cr_a}{r_a+r_b+r_c} \)
"Matematica este asemeni constitutiei unei tari, ale carei legi sunt: leme, teoreme, definitii..." Nica Nicolae
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Post by Mateescu Constantin »

Stim ca \( r_ar_b+r_br_c+r_cr_a=p^2 \) si \( r_a+r_b+r_c=4R+r \) .

Astfel inegalitatea devine: \( R+r\ge \frac{p^2}{4R+r}\ \Longleftrightarrow\ 4R^2+5Rr+r^2\ge p^2 \).

Dar din Euler si Gerretsen avem \( 4R^2+5Rr+r^2\ge 4R^2+4Rr+3r^2\ge p^2 \) .
Post Reply

Return to “Clasa a 10-a”