Page 1 of 1

Raportul a doua segmente

Posted: Fri Aug 21, 2009 1:37 pm
by Mateescu Constantin
Fie \( ABCD \) un patrulater inscriptibil in care \( AC\ >\ BD \) .

Notam \( E\in AB\cap CD,\ F\in AD\cap BC \), \( M \) mijlocul lui \( [AC] \) si \( N \) mijlocul lui \( [BD] \) .

Aratati ca \( \frac{MN}{EF}=\frac 12\left\(\frac{AC}{BD}-\frac{BD}{AC}\right\) \) .

Posted: Sat Aug 22, 2009 12:39 am
by Marius Mainea
Se folosesc toremele lui Ptolemeu si Euler:

1) \( ac+bd=ef \)

2) \( \frac{e}{f}=\frac{ad+bc}{ab+cd} \)

3) \( a^2+b^2+c^2+d^2=e^2+f^2+4MN^2 \)

precum si relatia :


4)\( EF^2=(ab+cd)(ad+bc)\[\frac{ac}{(a^2-c^2)^2}+\frac{bd}{(d^2-b^2)^2}\] \)