Inegalitate conditionata cu produsul 1(OWN)

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Inegalitate conditionata cu produsul 1(OWN)

Post by Claudiu Mindrila »

Demonstrati ca pentru orice \( a,\ b,\ c\in\left(\frac{1}{2},\ +\infty\right) \) astfel incat \( abc=1 \) are loc inegalitatea \( \frac{a^{4}}{b+c-1}+\frac{b^{4}}{c+a-1}+\frac{c^{4}}{a+b-1}\ge3. \)

Claudiu Mindrila, R. M. T. 3/2009
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
opincariumihai
Thales
Posts: 134
Joined: Sat May 09, 2009 7:45 pm
Location: BRAD

Re: Inegalitate conditionata cu produsul 1(OWN)

Post by opincariumihai »

\( \frac{a^4}{b+c-1}\geq 2a^2-2b-2c+2 \) si analoagele care insumate duc la
\( \frac{a^{4}}{b+c-1}+\frac{b^{4}}{c+a-1}+\frac{c^{4}}{a+b-1}
\geq 2\sum{a^2}-4\sum{a}+6 \geq\frac{2}{3} (\sum{a}-3)^2 \)
.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

\( LHS\ge \frac{(a^2+b^2+c^2)^2}{2\sum ab-6}\ge \frac{3\sqrt[3]{a^2b^2c^2}(a^2+b^2+c^2)}{2\sum ab-6}\ge RHS
\)
Post Reply

Return to “Clasa a IX-a”