Page 1 of 1

O relatie metrica utila intr-un triunghi.

Posted: Fri Nov 27, 2009 11:44 am
by Virgil Nicula
Lema.

Fie \( \triangle ABC \) si punctele \( D \) , \( E \) , \( F \) care apartin dreptelor \( BC \) , \( CA \) , \( AB \) respectiv. Notam \( P\in AD\cap EF \) . Sa se arate ca exista relatia metrica \( \underline{\overline{\left\|\ \frac {PF}{PE} = \frac {DB}{DC}\cdot\frac {AF}{AE}\cdot \frac {AC}{AB}\ \right\|}} \) .

Virgil Nicula wrote:Aplicatie. Fie \( \triangle ABC \) cu cercul inscris \( w=C(I) \) si punctele \( D\in (BC) \), \( E\in (CA \), \( F\in (BA \) astfel ca \( \frac {DB}{DC}=\frac {BF}{CE} \). Pentru un punct \( P\in AI \) notam \( K\in DF\cap BP \) , \( L\in DE\cap CP \). Sa se arate ca \( LK\parallel EF \).

Posted: Wed Dec 09, 2009 5:08 pm
by Marius Mainea
Se impart relatiile:

\( \frac{A[AFP]}{A[AEP]}=\frac{AF\sin \angle{BAD}}{AE\sin\angle{CAD}}=\frac{FP}{PE} \)

si

\( \frac{A[ABD]}{A[ADC]}=\frac{AB\sin \angle{BAD}}{AC\sin\angle{CAD}}=\frac{BD}{DC} \)