Page 1 of 1
Inegalitate cu numere cardinale
Posted: Fri Dec 04, 2009 3:59 pm
by Marius Mainea
Daca A si B sunt doua multimi finite, atunci \( |A\cup B|^n+|A\cap B|^n\ge |A|^n+|B|^n \) pentru orice \( n\ge 1 \).
Posted: Tue Dec 22, 2009 12:51 pm
by Marius Mainea
Indicatie:
Notam \( |A\setminus B|=a \), \( |A\cap B|=b \), \( |B\setminus A|=c \) si inegalitatea devine
\( (a+b+c)^n+b^n \ge (a+b)^n+(b+c)^n \), \( (\forall)n\ge 1 \)