Page 1 of 1

O matrice interesanta (own)

Posted: Wed Dec 16, 2009 6:30 pm
by Laurentiu Tucaa
Fie \( n\in\mathbb{N},n\ge2 \). Spunem ca o matrice \( A\in M_n(\mathbb{C}) \) are proprietatea P daca pt orice element \( a_{ij}=0 \), pe linia i si pe coloana j avem cel mult n-1 elemente nule. Consideram\( X_n=\{A\in M_n(\mathbb{C}):A \mbox{ are } P\} \).
a) Sa se demonstreze \( \forall A\in X_n, A=(a_{ij})_{i,j\in\{1,2,...,n\},\|\{a_{ij}:a_{ij}=0\}\|\le\frac{n^2}{2} \).
b) Sa se afle \( \min_{A\in X_n} rang(A) \).

Laurentiu Tuca