Page 1 of 1

O functie strict crescatoare

Posted: Sat Jan 02, 2010 3:16 pm
by Claudiu Mindrila
Sa se detemine functiile strict crescatoare \( f:\ \,\mathbb{R}\longrightarrow\mathbb{R} \) pentru care \( f\left(x+f\left(y\right)\right)=f\left(x+y\right)+1,\ \forall x,\ y\in\mathbb{R} \).

Posted: Sat Jan 02, 2010 5:44 pm
by Marius Mainea
Conditia de monotonie poate fi inlocuita cu injectivitatea.

Se obtine \( f(x)=x+1 \)

Posted: Sat Jan 02, 2010 7:22 pm
by Claudiu Mindrila
Solutie. Avem \( f\left(x+f\left(y\right)\right)=f\left(y+f\left(x\right)\right)=f\left(x+y\right)+1\Longrightarrow x+f\left(y\right)=y+f\left(x\right)\Longrightarrow f\left(x\right)-x=f\left(y\right)-y=k\Longrightarrow f\left(x\right)=x+k \). Inlocuind in relatia data obtinem \( k=1 \Longrightarrow f(x)=x+1 \)