Page 1 of 1
Admitere, Informatica, Univ. "A.I.Cuza" Iasi, 1997
Posted: Sun Jan 10, 2010 3:26 pm
by moldo
Sa se arate ca
\( {\lim}\limits_{n\to\infty}[a\ln(3+n)+b\ln(2+n)+c\ln(1+n)]=0 <=> a+b+c=0 \)
Admitere, Informatica, Univ. "A.I.Cuza" Iasi, 1997
Posted: Sun Feb 21, 2010 6:37 pm
by Adriana Nistor
\( \lim_{n\rightarrow\infty}[a\ln(3+n)+b\ln(n+2)+c\ln(n+1)]=\lim_{n\rightarrow\infty}[a\ln(1+\frac{3}{n})+b\ln(1+\frac{2}{n})+c\ln(1+\frac{1}{n})+a\ln{n}+b\ln{n}+c\ln{n}]=\lim_{n\rightarrow\infty}[a\frac{3}{n}+b\frac{2}{n}+c\frac{1}{n}+(a+b+c)\ln{n}]=\lim_{n\rightarrow\infty}[(a+b+c)\ln{n}] \)
\( \lim_{n\rightarrow\infty}[a\ln(3+n)+b\ln(2+n)+c\ln(1+n)]=0 <=>\lim_{n\rightarrow\infty}[(a+b+c)\ln{n}]=0<=> {a+b+c}=0 \)
Posted: Mon Feb 22, 2010 10:12 am
by mihai++
Totul e corect in afara de faptul ca te-ai complicat scriind ca \( \lim_{x\to 0}ln(1+x)=\lim_{x\to 0} x \) ceea ce este evident caci sunt 0 amandoua. Puteai pur si simplu sa inlocuiesti cu 0 acolo deoarece e o suma finita.
Re: Admitere, Informatica, Univ. "A.I.Cuza" Iasi,
Posted: Mon Feb 22, 2010 11:25 am
by Virgil Nicula
Notam \( a_n= a\ln(3+n)+b\ln(2+n)+c\ln(1+n) \) . Se arata usor ca
\( a_n=(a+b+c)\cdot\ln n+a\ln\left(1+\frac 3n\right)+b\ln\left(1+\frac 2n\right)+c\ln\left(1+\frac 1n\right) \) .
Se observa ca \( \lim_{n\to\infty}\ \left[a\ln\left(1+\frac 3n\right)+b\ln\left(1+\frac 2n\right)+c\ln\left(1+\frac 1n\right)\right]=0 \)
si \( \lim_{n\to\infty}\ a_n=\lim_{n\to\infty}\ (a+b+c)\cdot\ln n=\left\{\begin{array}{ccc}
-\infty & \mathrm{daca} & a+b+c<0\\\\\\\\
0 & \mathrm{daca} & a+b+c=0\\\\\\\\
\infty & \mathrm{daca} & a+b+c>0\end{array} \) .