Page 1 of 1

Sir de polinoame care converge uniform

Posted: Mon Jan 11, 2010 12:29 am
by bae
Fie \( (p_n) \) un sir de plinoame care converge uniform pe intervalul \( [0,1] \) la o functie nepolinomiala. Sa se arate ca gradele polinoamelor \( p_n \) sunt nemarginite.

Marsden J. - Elementary Classical Analysis, 1974

Posted: Mon Jan 11, 2010 10:28 pm
by Beniamin Bogosel
Presupunem ca gradul maxim al polinoamelor din sirul \( (p_n) \) este \( k \). Atunci fiecare polinom este unic determinat de valorile sale in punctele \( \frac{i}{k},\ i=0,1,...,k \). Notam cu \( a_n^r =p_n(\frac{r}{k}) \). Polinoamele de interpolare Lagrange sunt: (notam cu \( R(x)=x(x-\frac{1}{k})(...)(x-1) \) )
\( p_n(x)= \sum_{r=0}^k \frac{R(x) a_n^r}{(x-\frac{r}{k})R^\prime (\frac{r}{k})},\ \forall x \in [0,1] \). Trecand la limita obtinem \( f(x)=\sum_{r=0}^k \frac{R(x) f(\frac{r}{k})}{(x-\frac{r}{k})R^\prime (\frac{r}{k})} \), deci \( f \) este functie polinomiala. Contradictie.

Mi se pare ca nu am folosit convergenta uniforma.

Ceea ce am demonstrat spune ca spatiul polinoamelor de grad cel mult \( k \) este inchis daca luam norma convergentei uniforme.