Page 1 of 1

Inegalitate conditionata cu \sum \frac{1}{ab}=1

Posted: Fri Jan 15, 2010 11:30 pm
by Claudiu Mindrila
Fie \( a,\ b,\ c \) numere reale pozitive a. i. \( \frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1. \) Sa se arate ca \( \frac{3}{2}\le\frac{ab-1}{ab+1}+\frac{bc-1}{bc+1}+\frac{ca-1}{ca+1}<2 \).

Mircea Becheanu

Posted: Sat Jan 16, 2010 12:39 am
by Marius Mainea
Numerele \( x=\frac{b+c}{abc} \) si analoagele pot fi laturile unui triunghi si inegalitatea este echivalenta cu

\( \frac{3}{2}\le \sum\frac{x}{y+z}<2 \)