Inegalitate conditionata de ab+bc+ca=0
Posted: Tue Feb 09, 2010 7:42 pm
Fie \( a,\ b,\ c\in\mathbb{R}^{*} \) astfel incat \( ab+bc+ca=0 \).
a) Verificati ca \( \frac{bc\left(a-1\right)}{a}+\frac{ca\left(b-1\right)}{b}+\frac{ab\left(c-1\right)}{c}=2\left(a+b+c\right) \).
b) Aratati ca \( \frac{4}{3}\left(a^{2}+b^{2}+c^{2}\right)\ge a^{2}\left(b-1\right)\left(c-1\right)+b^{2}\left(c-1\right)\left(a-1\right)+c^{2}\left(a-1\right)\left(b-1\right) \).
Claudiu Mindrila, R. M. T. 1/2010
a) Verificati ca \( \frac{bc\left(a-1\right)}{a}+\frac{ca\left(b-1\right)}{b}+\frac{ab\left(c-1\right)}{c}=2\left(a+b+c\right) \).
b) Aratati ca \( \frac{4}{3}\left(a^{2}+b^{2}+c^{2}\right)\ge a^{2}\left(b-1\right)\left(c-1\right)+b^{2}\left(c-1\right)\left(a-1\right)+c^{2}\left(a-1\right)\left(b-1\right) \).
Claudiu Mindrila, R. M. T. 1/2010