O generalizare a unei probleme de medie(own)
Posted: Sun Feb 14, 2010 10:55 am
Fie \( f:[0,1] \to R \) o functie indefinit derivabila pe [0,1].Sa se arate ca \( \exists {\rm c} \in {\rm [0,1]} \) astfel incat \( \begin{array}{l}
\int\limits_{\rm 0}^{\rm 1} {f(x)dx = f(0) + \frac{1}{2}f^{(1)} (0) + \frac{1}{6}} f^{(2)} (0) + ... + \frac{1}{{n!}}f^{(n - 1)} (0) + \frac{1}{{(n + 1)!}}f^{(n)} (c) \\
\end{array} \),pentru orice \( n \in N \).
\int\limits_{\rm 0}^{\rm 1} {f(x)dx = f(0) + \frac{1}{2}f^{(1)} (0) + \frac{1}{6}} f^{(2)} (0) + ... + \frac{1}{{n!}}f^{(n - 1)} (0) + \frac{1}{{(n + 1)!}}f^{(n)} (c) \\
\end{array} \),pentru orice \( n \in N \).