Page 1 of 1

Etapa locala, Arges 2010

Posted: Sun Feb 14, 2010 12:44 pm
by Mateescu Constantin
\( \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \)Etapa locala, ARGES 2010


\( \fbox{\ 1.\ } \) Sa se determine numerele reale \( x \) si \( y \) cu proprietatea ca : \( 16^x+16^y+2^{\frac 1x}+2^{\frac 1y}=8 \) .

\( \fbox{\ 2.\ } \) a) Daca \( x_k\in (1,2]\ ,\ k=\overline{1,n} \) atunci : \( \sum_{k=1}^n \log_{x_k} (3x_{k+1}-2)\ \ge\ 2n \) , unde \( x_{n+1}=x_1 \) .

\( \ \ \ \ \ \ \ \ \ \ \)b) Sa se rezolve ecuatia : \( x^{\log_5 4}-7\log_5 x=2-x \) .

\( \fbox{\ 3.\ } \) Fie \( a \) , \( b \) , \( c\ \in\ \mathbb{R}^{\ast} _+ -\{1\} \) astfel incat \( b^2+c^2=a^2 \) . Sa se rezolve ecuatia : \( b^{\log_a x}+c^{\log_a x}=x \) .

\( \fbox{\ 4.\ } \) Fie numerele complexe \( a \) , \( b \) , \( c \) ,\( \varepsilon \) cu \( a\ \ne\ 0 \) , \( \varepsilon\ \ne\ 1 \) , \( \varepsilon^3=1 \) si \( |a+b\varepsilon+c\varepsilon^2|\ \le\ |a| \) .

\( \ \ \ \ \ \ \ \ \ \ \)Sa se arate ca ecuatia \( az^2+bz+c=0 \) are cel putin o solutie cu modulul mai mic sau egal decat \( 2 \) .

Posted: Sun Feb 14, 2010 7:36 pm
by Adriana Nistor
SUBIECTUL I

\( 16^x+2^{\frac{1}{x}}\ge4 \)(AM-GM)
\( 16^y+2^{\frac{1}{y}}\ge4 \)(AM-GM)
\( \Rightarrow 16^x+16^y+2^{\frac{1}{x}}+2^{\frac{1}{y}}\ge8 \)
dar \( 16^x+16^y+2^{\frac{1}{x}}+2^{\frac{1}{y}}=8 \)\( \Rightarrow 4x=\frac{1}{x} \) si \( 4y=\frac{1}{y} \),deci \( x,y\in\{\frac{-1}{2},\frac{1}{2}\} \)

Posted: Sun Feb 14, 2010 7:38 pm
by Mateescu Constantin
Adriana Nistor wrote:SUBIECTUL I

\( 16^x+2^{\frac{1}{x}}\ge4 \)(AM-GM)
\( 16^y+2^{\frac{1}{y}}\ge4 \)(AM-GM)
\( \Rightarrow 16^x+16^y+2^{\frac{1}{x}}+2^{\frac{1}{y}}\ge8 \)
dar \( 16^x+16^y+2^{\frac{1}{x}}+2^{\frac{1}{y}}=8 \)\( \Rightarrow 4x=\frac{1}{x} \) si \( 4y=\frac{1}{y} \),deci \( x,y\in\{\frac{-1}{2},\frac{1}{2}\} \)
Vezi ca nu ai aplicat bine AM-GM ...

Posted: Sun Feb 14, 2010 7:39 pm
by Adriana Nistor
de ce?

Posted: Sun Feb 14, 2010 7:42 pm
by Mateescu Constantin
\( 16^x+2^{\frac 1x}=2^{4x}+2^{\frac 1x}\ge 2\sqrt{2^{4x+\frac 1x}}\ge 2\sqrt{2^4}=8 \) , unde am folosit \( 4x+\frac 1x\ge 4 \) pentru x>0 !

Posted: Sun Feb 14, 2010 7:49 pm
by Adriana Nistor
Da,asa e

Posted: Tue Feb 16, 2010 10:00 am
by DrAGos Calinescu
Consideram functia
\( f:\mathbb{R}^*\rightarrow\mathbb{R}_+ \) \( f(t)=16^t+2^{\frac{1}{t}} \)
Pe \( (0,+\infty) f(t)\ge 8 \)
Pe \( (-\infty,0) f(t)\le 2 \)
Ecuatia data este echivalenta cu \( f(x)+f(y)=8 \)
Daca \( x>0 \) atunci \( f(x)\ge 8 \), dar \( f(y)>0 \) deci nu avem solutii.
Singurul caz ramas neanalizat este acela cu ambele numere negative pentru care
\( f(x)+f(y)<4<8 \)
In concluzie ecuatia nu are nicio solutie pe multimea numerelor reale.