Page 1 of 1

Maximul unei expresii

Posted: Sat Feb 27, 2010 9:23 pm
by DrAGos Calinescu
Daca \( a_1,a_2\in\mathbb{R} \) astfel incat \( a_1^2+a_2^2=1 \), sa se demonstreze ca maximul expresiei \( a_1a_2+\frac{1}{2}\cdot a_2^2 \) este \( \cos\frac{\pi}{5} \). Pentru ce valori ale numerelor \( a_1,a_2 \) se realizeaza acest maxim?

Posted: Mon Mar 01, 2010 11:55 pm
by Marius Mainea
\( a_1=\sin x \) , \( a_2=\cos x \)

atunci \( a_1a_2+\frac{1}{2}a_2^2=\frac{2\sin 2x+\cos 2x+1}{4}\le\frac{\sqrt{5}+1}{4}=\cos\frac{\pi}{5} \)