Page 1 of 1

sir

Posted: Mon Mar 08, 2010 2:07 pm
by elena_romina
Fie \( x_n \) \( n \in N \)un sir de numere reale cu \( x_0=1 \), \( x_{670}=0, x_{n+1}=2x_1x_n-x_{n-1} \) oricare ar fi \( n \geq 1 \)
a) Calculati \( x_{2010} \)
b) Sirul \( x_n \)are limita?
Multumesc

Posted: Mon Mar 08, 2010 3:22 pm
by mihai++
Din \( x_{n+1}-2x_1x_n+x_{n-1}=0 \) avem \( x_n=au^n+bv^n \) cu \( u,v \) solutiile ecuatiei \( t^2-2x_1t+1=0 \), daca \( x_1\neq1 \) si \( x_n=a+nb \), daca \( x_1=1 \).
Astfel ca in primu caz:
\( x_0=1 \rightarrow a+b=1\\
x_{670}=0\rightarrow au^{670}+bv^{670}=0 \rightarrow a=\frac{v^{670}}{v^{670}-u^{670}},b=\frac{-u^{670}}{v^{670}-u^{670}) \)
.
Si de aici \( x_{2010}=\frac{(uv)^{670}}{v^{670}-u^{670}}\cdot(u^{2\cdot 670}-v^{2\cdot 670})=-(u^{670}+v^{670}) \)
Al doilea caz se trateaza asemanator.

Posted: Mon Mar 08, 2010 5:20 pm
by andy crisan
Ai uitat un caz, care este si cel mai greu, cazul \( x_1\in(-1;1) \) si la cazurile anterioare trebuia \( x_1\in(-\infty;-1);(1;+\infty) \) si \( x_1\in\{-1;1\} \).

Posted: Mon Mar 08, 2010 9:13 pm
by mihai++
Pai daca is reale sau complexe conteaza? Ce e drept am uitat de \( x_1=-1 \).

Posted: Mon Mar 08, 2010 9:56 pm
by andy crisan
Eu stiam alta formula daca \( \Delta <0 \) si anume ca \( x_{n}=R^{n}(a cos(n\alpha)+bsin(n\alpha)) \) unde \( R=|r_{1}|=|r_2| \), unde \( r_1,r_2 \) sunt solutiile ecuatiei caracteristice si \( \alpha=arg(r_1)=arg(r_2) \) si da cam diferit cred.

Posted: Tue Mar 09, 2010 7:41 am
by elena_romina
Nu mai inteleg nimic :cry: :cry:

Posted: Tue Mar 09, 2010 8:54 am
by mihai++
Da cam ai dreptate m-am grabit! Acum imi amintesc ca si la rezolvarea ecuatiilor diferentiale e la fel. Elena ma scuzi ca te am bagat in ceata. Dar oricum problema consta in rezolvarea sirului care nu ar trebui sa iti puna probleme.