Page 1 of 1

Conc.interj."Pitagora"Rm.Valcea 2010 Subiectul IV

Posted: Sat May 15, 2010 8:38 pm
by Andi Brojbeanu
Se considera piramida triunghiulara regulata \( VABC \) si un punct mobil \( M \) in interiorul triunghiului \( ABC \).
Daca \( d_1, d_2, d_3 \) sunt distantele de la \( M \) la fetele laterale \( (VAB), (VBC) \), respectiv \( (VCA) \), demonstrati ca:
a) \( d_1+d_2+d_3=k \)(constant);
b) \( \frac{k-d_1}{k+d_1}+\frac{k-d_2}{k+d_2}+\frac{k-d_3}{k+d_3}\ge \frac{3}{2} \).
Prof. Constantin Barascu, Rm.Valcea

Posted: Sat May 15, 2010 9:17 pm
by Mateescu Constantin
a) Notăm cu \( h \) înălţimea piramidei şi cu \( a \) latura triunghiului echilateral \( ABC \) .

Obtinem uşor că : \( \mathcal{S}_{\small VAB}=\mathcal{S}_{\small VBC}=\mathcal{S}_{\small VCA}=\frac a4\ \cdot\ \sqrt{\frac{12h^2+a^2}{3}} \) .

Însă \( \mathcal{V}_{\small VABC}=\mathcal{V}_{\small VMAB}+\mathcal{V}_{\small VMBC}+\mathcal{V}_{\small VMCA}\ \Longrightarrow\ d_1+d_2+d_3=\frac{3ah}{\sqrt{12h^2+a^2}}=\text{ct.} \)

b) \( LHS=\sum\ \frac{(d_2+d_3)^2}{(2d_1+d_2+d_3)(d_2+d_3)}\ \stackrel{\small CBS}{\ge}\ \frac{4(d_1+d_2+d_3)^2}{2\sum\ d_1^2\ +\ 6\sum\ d_2d_3}\ \ge\ \frac 32 \) ,

ultima inegalitate fiind echivalentă cu \( \sum\ d_1^2\ \ge\ \sum\ d_2d_3 \) .