JBTST III 2010, Problema 2
Posted: Sun May 23, 2010 11:56 am
Fie \( n \) un numar intreg, \( n\ge 2 \). Pentru fiecar numar \( k=1,2, ....., 2, n \), notam cu \( a_k \)numarul multiplilor lui k din multimea \( \{1, 2, ..., n\} \) si fie \( x_k=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}_...+\frac{1}{a_k} \). Sa se arate ca:
\( \frac{x_1+x_2+...+x_n}{n}\le \frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{n^2} \).
\( \frac{x_1+x_2+...+x_n}{n}\le \frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{n^2} \).