Page 1 of 1
Inegalitate constanta lui Euler
Posted: Tue Nov 13, 2007 4:36 pm
by Bogdan Cebere
Demonstrati ca
\( \frac{1}{2n+1}<{c_{n}}-c<\frac{1}{2n} \), cu \( {c_{n}}=\frac{1}{1}+\frac{1}{2}+..+\frac{1}{n}-lnn \), iar \( \lim_{n\to\infty}{c_{n}}=c \).
Re: Inegalitate constanta lui Euler
Posted: Sat Jan 12, 2008 10:50 pm
by Cezar Lupu
Gordon_C wrote:Demonstrati ca
\( \frac{1}{2n+1}<{c_{n}}-c<\frac{1}{2n} \), cu \( {c_{n}}=\frac{1}{1}+\frac{1}{2}+..+\frac{1}{n}-lnn \), iar \( \lim_{n\to\infty}{c_{n}}=c \).
Interesanta inegalitate
Din inegalitatea
\( \left(1+\frac{1}{n}\right)^{n+\frac{1}{2}}>e \) (demonstrati!), logaritmand, vom obtine:
\( \frac{2}{2n+1}< ln(n+1)-ln n \). Pe de alta parte, din inegalitatea,
\( e-\left(1+\frac{1}{n}\right)^{n}> \frac{e}{2n+2} \), vom obtine, tot prin logaritmare ca
\( ln(n+1)- ln n<\frac{2n+1}{2n(n+1)} \). Astfel, avem dubla inegalitate:
\( \frac{2}{2n+1}<ln (n+1)- ln n<\frac{2n+1}{2n(n+1)} \).
Acum, consideram sirurile
\( (a_{n})_{n\geq 1} \) si
\( (b_{n})_{n\geq 1} \) definitye prin
\( a_{n}=c_{n}-\frac{1}{2n+1} \) si
\( b_{n}=c_{n}-\frac{1}{2n} \). Se arata usor ca
\( a_{n} \) este descrescator, iar
\( b_{n} \) este crescator si ca
\( \lim_{n\to\infty}a_{n}=\lim_{n\to\infty}b_{n}=c \). Astfel, va rezulta imediat ca
\( \frac{1}{2n}< c_{n}-c<\frac{1}{2n+1} \). Mai mult, din aceasta dubla inegalitate, se deduce destul de rapid ca
\( \lim_{n\to\infty}n(c_{n}-c)=\frac{1}{2} \).