Page 1 of 1

Inegalitatea 7, conditionata, cu ab+bc+ca=1

Posted: Wed Nov 14, 2007 7:46 pm
by heman
Demonstrati inegalitatea \( \sqrt {3(ab+bc+ca)}+\sqrt{\frac {1} {a^2} +\frac {1} {b^2} +\frac {1} {c^2} +(a+b+c)^2} \le \frac {1} {abc} \),
unde \( a,b,c>0 \) si \( ab+bc+ca=1. \)

Posted: Sun Jun 08, 2008 1:57 am
by Marius Mainea
Prin aducere la acelasi numitor se obtine: \( abc\sqrt{3}+\sqrt{[(1-abc(a+b+c)]}^2\leq1 \), apoi prin eliminarea radicalului relatia se reduce la \( \sqrt{3}\leq a+b+c \), care este adevarata folosind CBS.