Page 1 of 1
Inegalitate cu min max
Posted: Thu Sep 27, 2007 10:10 pm
by Alin Galatan
Sa se gaseasca \( \min_{a,b \in R} \max (a^2+b,b^2+a). \)
Bibliografie:
1. T. Andreescu, R. Gelca - Putnam and Beyond.
Posted: Thu Sep 27, 2007 10:57 pm
by pohoatza
Chiar ca beyond Putnam e ca dificultate. Fie \( t=\max(a^{2}+b,b^{2}+a) \). Din ce am inteles, se cere \( \min(t). \)
Din inegalitatea mediilor si adunand \( \frac{1}{2} \), obtinem
\( 2t + \frac{1}{2} \geq \left(a+\frac{1}{2}\right)^{2}+\left(b+\frac{1}{2}\right)^{2} \geq 0 \).
Astfel, \( t \geq -\frac{1}{4} \). Deci \( \min(t) = -\frac{1}{4}. \)
Posted: Fri Sep 28, 2007 9:43 pm
by Alin Galatan
Pur si simplu \( max(a^2+b,b^2+a)\geq\frac{(a^2+b)+(b^2+a)}{2}\Rightarrow 2t\geq\frac{a^2+a+b^2+b}{2} \), de unde adunand \( \frac{1}{2} \) ce spui tu iese concluzia.