Concursul "Teodor Topan" - problema 1
Posted: Mon Dec 03, 2007 2:33 pm
1. a) Aflati \( a \) daca \( \bar{0,1\left(a\right)}+\bar{0,a\left(3\right)}=0,3\left(5\right) \)
b) Se da \( n=2^{2006}-2^{2005}-2^{2004}-2^{2003} \). Aflati \( x \) din proportia: \( \frac{n}{x}=\frac{8^{667}}{5} \)
Crisan Georgeta, Simleul Silvaniei
b) Se da \( n=2^{2006}-2^{2005}-2^{2004}-2^{2003} \). Aflati \( x \) din proportia: \( \frac{n}{x}=\frac{8^{667}}{5} \)
Crisan Georgeta, Simleul Silvaniei