Inegalitatea lui Holder in actiune
Posted: Thu Sep 27, 2007 10:18 pm
In memoria domnului profesor Alexandru Lupas.
Inegalitatea lui Holder: Daca \( a_{1},a_{2}, \ldots,
a_{n} \), \( b_{1},b_{2}, \ldots, b_{n} \) si \( p,q \) numere reale pozitive astfel incat \( \frac{1}{p}+\frac{1}{q} = 1 \), atunci: \( \left(
\sum_{i=1}^{} a_{i}^{p} \right)^{\frac{1}{p}} \left( \sum_{i=1}^{}
b_{i}^{q} \right)^{\frac{1}{q}} \geq \sum_{i = 1}^{n} a_{i}b_{i}. \)
Aplicatii:
1. Daca \( a_{1},a_{2}, \ldots, a_{n} \); \( b_{1},
b_{2}, \ldots, b_{n} \), \( c_{1},c_{2}, \ldots, c_{n} \) si \( p,q,r \) sunt numere reale pozitive, cu \( \frac{1}{p}+\frac{1}{q}+\frac{1}{r} =1 \), atunci \( \left( \sum_{i=1}^{} a_{i}^{p} \right)^{\frac{1}{p}}
\left( \sum_{i=1}^{} b_{i}^{q} \right)^{\frac{1}{q}} \left(
\sum_{i=1}^{} c_{i}^{r} \right)^{\frac{1}{r}} \geq \sum_{i=1}^{n}
a_{i}b_{i}c_{i}. \)
(indicatie: mai intai se demonstreaza ca \( \frac{x^{p}}{p}+\frac{y^{q}}{q}+\frac{z^{r}}{r} \geq xyz \)).
Prezentam si alte exemple:
2. [Kiran Kedlaya]. Fie \( a,b,c \) numere reale pozitive. Sa
se arate ca \( \frac{a+\sqrt{ab}+\sqrt[3]{abc}}{3} \leq
\sqrt[3]{a\left(\frac{a+b}{2}\right)\left(\frac{a+b+c}{3}
\right)}. \)
Solutie: Rezulta din primul exercitiu ca \( \left(
\sum_{i=1}^{3} a_{i}^3\right)^{\frac{1}{3}} \left( \sum_{i=1}^{3}
b_{i}^3 \right)^{\frac{1}{3}} \left( \sum_{i=1}^{3} c_{i}^3
\right)^{\frac{1}{3}} \geq \sum_{i=1}^{3} a_{i}b_{i}c_{i}(2) \)
Efectuand substitutiile \( a_{1} = a^{\frac{1}{3}}, a_{2} = a^{\frac{1}{3}}, a_{3} = a^{\frac{1}{3}}, b_{1} = a^{\frac{1}{3}}, b_{2} = \left( \frac{a+b}{2} \right)^{\frac{1}{3}}, b_{3} = b^{\frac{1}{3}}, c_{1} = a^{\frac{1}{3}}, c_{2} = b^{\frac{1}{3}}, c_{3} = c^{\frac{1}{3}} \) obtinem \( \sqrt[3]{a\left(\frac{a+b}{2}\right)\left(\frac{a+b+c}{3} \right)}
\geq \frac{a+\sqrt[3]{\frac{ab(a+b)}{2}}+\sqrt[3]{abc}}{3} \)
Cum \( \sqrt[3]{\frac{ab(a+b)}{2}} \geq \sqrt{ab} \), din inegalitatea mediilor, rezulta inegalitatea dorita.
3. [T. Andreescu, USAMO 2004] Fie \( a,b,c \) numere reale pozitive. Aratati ca: \( (a^5-a^2+3)(b^5-b^2+3)(c^5-c^2+3) \geq (a+b+c)^{3}. \)
Solutie Din inegalitatea lui Holder avem:
\( (a^3+1+1)^{\frac{1}{3}} (1+b^3+1)^{\frac{1}{3}}
(1+1+c^{3})^{\frac{1}{3}} \geq (a+b+c). (1) \) Dar pentru
orice numere pozitive \( a \), expresiile \( a^2-1 \) si \( a^3-1 \) au acelasi semn. Deci \( 0 \leq (a^3-1)(a^2-1) = a^5-a^3-a^2+1 \) de unde
\( a^5-a^2+3 \geq a^3+2. \) In consecinta
\( (a^5-a^2+3)(b^5-b^2+3)(c^5-c^2+3) \geq (a^3+2)(b^3+2)(c^3+2) \) si tinand cont de (1) rezulta inegalitatea din enunt.
4. [Japonia]. Fie \( a,b,c \) numere reale pozitive
care satisfac \( a^2 \leq b^2+c^2, b^2 \leq a^2+c^2, c^2 \leq a^2+b^2 \). Sa se arate ca \( (a+b+c)(a^2+b^2+c^2)(a^3+b^3+c^3) \geq
4(a^6+b^6+c^6). \) si sa se determine cand are loc egalitatea.
Solutie: In inegalitatea (2) facem substitutia \( a_{1}
= a^{\frac{1}{3}}, a_{2} = b^{\frac{1}{3}}, a_{3} =
c^{\frac{1}{3}}, b_{1} = a^{\frac{2}{3}}, b_{2} =
b^{\frac{2}{3}}, b_{3} = c^{\frac{2}{3}}, c_{1} = a, c_{2} =
b, c_{3} = c \). Obtinem \( (a+b+c)(a^2+b^2+c^2)(a^3+b^3+c^3) \geq
(a^2+b^2+c^2)^3, \) si este suficient sa demonstram ca
\( (a^2+b^2+c^2)^3 \geq 4(a^6+b^6+c^6) \). Ridicand la putere si
grupand termenii, ramane sa demonstram ca
\( a^4(a^2+c^2)+b^4(a^2+c^2)+c^4(a^2+b^2)+2a^2b^2c^2 \geq
a^6+b^6+c^6, \) inegalitate ce rezulta imediat aplicand ipoteza.
Evident ca egalitatea are loc daca si numai daca \( a=b=c=0 \).
5. [APMO] Fie \( a,b,c \) numere reale. Sa se arate
\( \left(1+ \frac{a}{b}\right) \left(1 + \frac{b}{c} \right) \left(
1+ \frac{c}{a} \right) \geq 2 \left(1+ \frac{a+b+c}{\sqrt[3]{abc}}
\right). \)
6. [Putnam - 2003] Fie \( a_{1},a_{2}, \ldots,
a_{n} \) si \( b_{1}, b_{2}, \ldots, b_{n} \) numere reale nenegative. Sa se arate ca: \( (a_{1}a_{2} \cdots a_{n})^{\frac{1}{n}} \leq ((a_{1}+b_{1})(a_{2}+b_{2}) \cdots (a_{n}+b_{n}))^{\frac{1}{n}}. \)
7. [T.Andreescu, G. Dospinescu] (din [1]) Sa se arate ca daca a,b,c sunt numere reale pozitive cu \( a+b+c=1 \) atunci \( (a^2+b^2)(b^2+c^2)(c^2+a^2) \geq 8(a^2b^2+b^2c^2+c^2a^2)^2. \)
8. [G. Dospinescu] Sa se gaseasca minimul expresiei \( \sum_{i=1}^{n} \sqrt{ \frac{a_1 a_2 \cdots a_n}{1-(n-1)a_i}} \) unde \( a_1, a_2, \ldots, a_n < \frac{1}{n-1} \), \( a_1+a_2+ \ldots + a_n = 1 \) si \( n>2 \) intreg.
Bibliografie:
[1.] T. Andreescu, V. Cartoaje, G. Dospinescu si M. Lascu - Old and New Inequalities, GIL Publishing House, 2004
[2.] V. Cartoaje - Algebraic Inequalities. Old and New Methods, GIL Publishing House, 2006.
[3.] P.K.Hung - Secrets in Inequalities, GIL Publishing House, 2007
P.S. Invit cititorii de pe forum sa completeze aceasta incercare de nota.
Mircea Lascu
Inegalitatea lui Holder: Daca \( a_{1},a_{2}, \ldots,
a_{n} \), \( b_{1},b_{2}, \ldots, b_{n} \) si \( p,q \) numere reale pozitive astfel incat \( \frac{1}{p}+\frac{1}{q} = 1 \), atunci: \( \left(
\sum_{i=1}^{} a_{i}^{p} \right)^{\frac{1}{p}} \left( \sum_{i=1}^{}
b_{i}^{q} \right)^{\frac{1}{q}} \geq \sum_{i = 1}^{n} a_{i}b_{i}. \)
Aplicatii:
1. Daca \( a_{1},a_{2}, \ldots, a_{n} \); \( b_{1},
b_{2}, \ldots, b_{n} \), \( c_{1},c_{2}, \ldots, c_{n} \) si \( p,q,r \) sunt numere reale pozitive, cu \( \frac{1}{p}+\frac{1}{q}+\frac{1}{r} =1 \), atunci \( \left( \sum_{i=1}^{} a_{i}^{p} \right)^{\frac{1}{p}}
\left( \sum_{i=1}^{} b_{i}^{q} \right)^{\frac{1}{q}} \left(
\sum_{i=1}^{} c_{i}^{r} \right)^{\frac{1}{r}} \geq \sum_{i=1}^{n}
a_{i}b_{i}c_{i}. \)
(indicatie: mai intai se demonstreaza ca \( \frac{x^{p}}{p}+\frac{y^{q}}{q}+\frac{z^{r}}{r} \geq xyz \)).
Prezentam si alte exemple:
2. [Kiran Kedlaya]. Fie \( a,b,c \) numere reale pozitive. Sa
se arate ca \( \frac{a+\sqrt{ab}+\sqrt[3]{abc}}{3} \leq
\sqrt[3]{a\left(\frac{a+b}{2}\right)\left(\frac{a+b+c}{3}
\right)}. \)
Solutie: Rezulta din primul exercitiu ca \( \left(
\sum_{i=1}^{3} a_{i}^3\right)^{\frac{1}{3}} \left( \sum_{i=1}^{3}
b_{i}^3 \right)^{\frac{1}{3}} \left( \sum_{i=1}^{3} c_{i}^3
\right)^{\frac{1}{3}} \geq \sum_{i=1}^{3} a_{i}b_{i}c_{i}(2) \)
Efectuand substitutiile \( a_{1} = a^{\frac{1}{3}}, a_{2} = a^{\frac{1}{3}}, a_{3} = a^{\frac{1}{3}}, b_{1} = a^{\frac{1}{3}}, b_{2} = \left( \frac{a+b}{2} \right)^{\frac{1}{3}}, b_{3} = b^{\frac{1}{3}}, c_{1} = a^{\frac{1}{3}}, c_{2} = b^{\frac{1}{3}}, c_{3} = c^{\frac{1}{3}} \) obtinem \( \sqrt[3]{a\left(\frac{a+b}{2}\right)\left(\frac{a+b+c}{3} \right)}
\geq \frac{a+\sqrt[3]{\frac{ab(a+b)}{2}}+\sqrt[3]{abc}}{3} \)
Cum \( \sqrt[3]{\frac{ab(a+b)}{2}} \geq \sqrt{ab} \), din inegalitatea mediilor, rezulta inegalitatea dorita.
3. [T. Andreescu, USAMO 2004] Fie \( a,b,c \) numere reale pozitive. Aratati ca: \( (a^5-a^2+3)(b^5-b^2+3)(c^5-c^2+3) \geq (a+b+c)^{3}. \)
Solutie Din inegalitatea lui Holder avem:
\( (a^3+1+1)^{\frac{1}{3}} (1+b^3+1)^{\frac{1}{3}}
(1+1+c^{3})^{\frac{1}{3}} \geq (a+b+c). (1) \) Dar pentru
orice numere pozitive \( a \), expresiile \( a^2-1 \) si \( a^3-1 \) au acelasi semn. Deci \( 0 \leq (a^3-1)(a^2-1) = a^5-a^3-a^2+1 \) de unde
\( a^5-a^2+3 \geq a^3+2. \) In consecinta
\( (a^5-a^2+3)(b^5-b^2+3)(c^5-c^2+3) \geq (a^3+2)(b^3+2)(c^3+2) \) si tinand cont de (1) rezulta inegalitatea din enunt.
4. [Japonia]. Fie \( a,b,c \) numere reale pozitive
care satisfac \( a^2 \leq b^2+c^2, b^2 \leq a^2+c^2, c^2 \leq a^2+b^2 \). Sa se arate ca \( (a+b+c)(a^2+b^2+c^2)(a^3+b^3+c^3) \geq
4(a^6+b^6+c^6). \) si sa se determine cand are loc egalitatea.
Solutie: In inegalitatea (2) facem substitutia \( a_{1}
= a^{\frac{1}{3}}, a_{2} = b^{\frac{1}{3}}, a_{3} =
c^{\frac{1}{3}}, b_{1} = a^{\frac{2}{3}}, b_{2} =
b^{\frac{2}{3}}, b_{3} = c^{\frac{2}{3}}, c_{1} = a, c_{2} =
b, c_{3} = c \). Obtinem \( (a+b+c)(a^2+b^2+c^2)(a^3+b^3+c^3) \geq
(a^2+b^2+c^2)^3, \) si este suficient sa demonstram ca
\( (a^2+b^2+c^2)^3 \geq 4(a^6+b^6+c^6) \). Ridicand la putere si
grupand termenii, ramane sa demonstram ca
\( a^4(a^2+c^2)+b^4(a^2+c^2)+c^4(a^2+b^2)+2a^2b^2c^2 \geq
a^6+b^6+c^6, \) inegalitate ce rezulta imediat aplicand ipoteza.
Evident ca egalitatea are loc daca si numai daca \( a=b=c=0 \).
5. [APMO] Fie \( a,b,c \) numere reale. Sa se arate
\( \left(1+ \frac{a}{b}\right) \left(1 + \frac{b}{c} \right) \left(
1+ \frac{c}{a} \right) \geq 2 \left(1+ \frac{a+b+c}{\sqrt[3]{abc}}
\right). \)
6. [Putnam - 2003] Fie \( a_{1},a_{2}, \ldots,
a_{n} \) si \( b_{1}, b_{2}, \ldots, b_{n} \) numere reale nenegative. Sa se arate ca: \( (a_{1}a_{2} \cdots a_{n})^{\frac{1}{n}} \leq ((a_{1}+b_{1})(a_{2}+b_{2}) \cdots (a_{n}+b_{n}))^{\frac{1}{n}}. \)
7. [T.Andreescu, G. Dospinescu] (din [1]) Sa se arate ca daca a,b,c sunt numere reale pozitive cu \( a+b+c=1 \) atunci \( (a^2+b^2)(b^2+c^2)(c^2+a^2) \geq 8(a^2b^2+b^2c^2+c^2a^2)^2. \)
8. [G. Dospinescu] Sa se gaseasca minimul expresiei \( \sum_{i=1}^{n} \sqrt{ \frac{a_1 a_2 \cdots a_n}{1-(n-1)a_i}} \) unde \( a_1, a_2, \ldots, a_n < \frac{1}{n-1} \), \( a_1+a_2+ \ldots + a_n = 1 \) si \( n>2 \) intreg.
Bibliografie:
[1.] T. Andreescu, V. Cartoaje, G. Dospinescu si M. Lascu - Old and New Inequalities, GIL Publishing House, 2004
[2.] V. Cartoaje - Algebraic Inequalities. Old and New Methods, GIL Publishing House, 2006.
[3.] P.K.Hung - Secrets in Inequalities, GIL Publishing House, 2007
P.S. Invit cititorii de pe forum sa completeze aceasta incercare de nota.
Mircea Lascu