Fie \( a, b, c \) trei numere reale strict pozitive astfel incat \( a+b+c\geq\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \). Sa se arate ca \( ab+bc+ca\geq 3 \).
Posted: Thu Sep 27, 2007 9:08 pm
by Filip Chindea
\( ab + bc + ca \le abc(a + b + c) = \frac{1}{3}\cdot 3((ab)(bc) + (bc)(ca) + (ca)(ab)) \le \) \( \frac{1}{3} \cdot (ab + bc + ca)^2 \), de unde concluzia e imediata.