Page 1 of 1

Minim

Posted: Thu Jan 17, 2008 9:07 pm
by Bogdan Cebere
Daca \( z_1,z_2,z_3 \) sunt numere complexe astfel incat|\( |z_1|=|z_2|=|z_3|=r \) si \( z_2 \neq z_3 \). Sa se demonstreze ca \( \min_{a \in R}|a z_2+(1-a)z_3-z_1|= \frac{1}{2r}|z_1-z_2||z_1-z_3| \).

Dorin Andrica, ONM 1983

Posted: Fri Jan 18, 2008 1:38 am
by Cezar Lupu
Consideram in planul complex punctele \( M_{1}(z_{1}), M_{2}(z_{2}), M_{3}(z_{3}) \) si \( M \) un punct de afix \( z=az_{2}+(1-a)z_{3} \), unde \( a\in\mathbb{R} \). Mai mult, din aceasta combinatie convexa a afixului punctului \( M \) avem ca el apartine dreptei \( M_{2}M_{3} \).
Fie \( P \) piciorul perpendicularei din \( M_{1} \) pe dreapta \( M_{2}M_{3} \). Avem ca \( |M_{1}M| \geq |M_{1}P| \). Este clar ca
\( \min_{a\in\mathbb{R}} |az_{2}+(1-a)z_{3}-z_1|=|M_{1}P|=h \) unde \( h \) reprezinta inaltimea triunghiului \( M_{1}M_{2}M_{3} \) care pleaca din varful \( M_{1} \). Acum, exprimand aria triunghiului \( M_{1}M_{2}M_{3} \) cu ambele formule si aplicand si teorema sinusurilor, vom obtine intr-un final dupa mici calcule ca
\( h=\frac{1}{2r}|z_{1}-z_{2}||z_{1}-z_{3}| \) de unde concluzia problemei noastre.