Search found 12 matches

by firebomb
Sat Feb 14, 2009 8:39 pm
Forum: Clasa a 9-a
Topic: Parte intreaga
Replies: 1
Views: 450

Parte intreaga

Cum se rezolve ecuatia :

\( [\frac{x-2}{3}]=[\frac{x+1}{2}] \) ?
by firebomb
Thu Feb 12, 2009 8:13 pm
Forum: Intrebari teoretice
Topic: Identitatea lui Hermite
Replies: 4
Views: 1046

Identitatea lui Hermite

Vreau si eu o demonstratie la identitatea lui Hermite :

\( [x]+[x+\frac{1}{n}]+[x+\frac{2}{n}]+...+[x+\frac{n-1}{n}]=[nx] \)
by firebomb
Fri Feb 06, 2009 8:04 pm
Forum: Chat de voie
Topic: Daca se poate
Replies: 1
Views: 349

Daca se poate

Va rog si eu frumos daca poate cineva sa-mi dea un link care sa duca la niste notiuni care sa ma ajute sa consolidez radicalii de alt ordin .
by firebomb
Mon Jan 19, 2009 8:44 pm
Forum: Clasa a IX-a
Topic: Inegalitate
Replies: 7
Views: 515

Da e corect cum am facut eu ? Sau trebuie sa mai lucrez cu inductia ? :roll:
by firebomb
Fri Jan 16, 2009 2:07 pm
Forum: Clasa a IX-a
Topic: Inegalitate
Replies: 7
Views: 515

Prin inductie consideram adevarata inegalitatea 4^n \cdot (n!)^2<(n+1)(2n)! si trebuie sa aratam ca 4^{n+1} \cdot [(n+1)!]^2<(n+2)(2n+2)! 4^{n+1} \cdot [(n+1)!]^2<(n+2)(2n+2)! \Leftrightarrow 4^n \cdot 4 \cdot [n! \cdot (n+1)]^2 < (n+2)(2n+2)! \Leftrightarrow 4^n \cdot (n!)^2 \cdot 4(n+1)^2 < (n+2)(...
by firebomb
Sat Jan 10, 2009 4:05 pm
Forum: Clasa a 9-a
Topic: Vectori necoliniari
Replies: 2
Views: 1062

a) Presupunem prin absurd ca \vec{u}+\vec{v}\ \parallel \ 2\vec{u}+\vec{v} \Leftrightarrow (\exists) k \in \mathb{R} astfel incat 2\vec{u}+\vec{v}=k \cdot (\vec{u}+\vec{v}) \Leftrightarrow (2-k)\vec{u}=(k-1)\vec{v} \Leftrightarrow \vec{u}=\frac{k-1}{2-k}\vec{v} \Leftrightarrow \vec{u}\ \parallel\ \v...
by firebomb
Sat Jan 03, 2009 2:05 am
Forum: Clasa a VII-a
Topic: Multiplu din cifre de 1
Replies: 2
Views: 408

Cum adica ? Iti cere multiplu . 1 nu e multiplu oricarui numar .
by firebomb
Tue Dec 02, 2008 10:24 pm
Forum: Clasa a IX-a
Topic: Functia
Replies: 3
Views: 298

Cred ca m-am prins ... Fie x=3-x Rezulta f(3-x)+2f(x)=5-2x/\cdot(-2) 2f(3-x)+f(x)=2x-1 -2f(3-x)-4f(x)=-10+4x Adunam relatiile si obtinem : -3f(x)=6x-11 \longrightarrow f(x)=-\frac{6x-11}{3}=\frac{11-6x}{3} f -para \Leftrightarrow f(x)=f(-x) Adica \frac{11-6x}{3}=\frac{11+6x}{3} , fals , rezulta f nu...
by firebomb
Tue Dec 02, 2008 8:54 pm
Forum: Clasa a IX-a
Topic: Functia
Replies: 3
Views: 298

Functia

Se da o functie \( f:\mathb{R}\rightarrow\mathb{R} \) , cu \( f(x)+2f(3-x)=2x-1 \) . Sa se cerceteze daca functia este para , impara sau periodica .
by firebomb
Wed Nov 26, 2008 7:39 am
Forum: Clasa a IX-a
Topic: Vectori
Replies: 5
Views: 464

Deci nu inteleg la reciproca ... :( Se pleaca de la x=-1/1+k , y=1 , z=-k/k+1 si si foloseste relatia vectoriala OM=1/1+k ori OA +k/k+1 ori OB ; OM , OB , OA vectori sau cum ? ... nu inteleg . :(
by firebomb
Sat Nov 22, 2008 12:23 am
Forum: Clasa a VII-a
Topic: Cardinalul unei multimi
Replies: 3
Views: 980

Pai si cum arat acolo ca daca mn=m+n+1, atunci m=2, n=3 ? :roll:
by firebomb
Thu Nov 20, 2008 9:54 pm
Forum: Clasa a VII-a
Topic: Cardinalul unei multimi
Replies: 3
Views: 980

Cardinalul unei multimi

Fie multimea \( A= \){\( x\in \mathb{Q}|x=\frac{n^2+1}{2n^2+n+1} \) , unde \( n=\overline{1,100} \)}. Se cere cardinalul multimii A.

Go to advanced search