Cum se rezolve ecuatia :
\( [\frac{x-2}{3}]=[\frac{x+1}{2}] \) ?
Search found 12 matches
- Sat Feb 14, 2009 8:39 pm
- Forum: Clasa a 9-a
- Topic: Parte intreaga
- Replies: 1
- Views: 450
- Thu Feb 12, 2009 8:13 pm
- Forum: Intrebari teoretice
- Topic: Identitatea lui Hermite
- Replies: 4
- Views: 1046
Identitatea lui Hermite
Vreau si eu o demonstratie la identitatea lui Hermite :
\( [x]+[x+\frac{1}{n}]+[x+\frac{2}{n}]+...+[x+\frac{n-1}{n}]=[nx] \)
\( [x]+[x+\frac{1}{n}]+[x+\frac{2}{n}]+...+[x+\frac{n-1}{n}]=[nx] \)
- Fri Feb 06, 2009 8:04 pm
- Forum: Chat de voie
- Topic: Daca se poate
- Replies: 1
- Views: 349
Daca se poate
Va rog si eu frumos daca poate cineva sa-mi dea un link care sa duca la niste notiuni care sa ma ajute sa consolidez radicalii de alt ordin .
- Mon Jan 19, 2009 8:44 pm
- Forum: Clasa a IX-a
- Topic: Inegalitate
- Replies: 7
- Views: 515
- Fri Jan 16, 2009 2:07 pm
- Forum: Clasa a IX-a
- Topic: Inegalitate
- Replies: 7
- Views: 515
Prin inductie consideram adevarata inegalitatea 4^n \cdot (n!)^2<(n+1)(2n)! si trebuie sa aratam ca 4^{n+1} \cdot [(n+1)!]^2<(n+2)(2n+2)! 4^{n+1} \cdot [(n+1)!]^2<(n+2)(2n+2)! \Leftrightarrow 4^n \cdot 4 \cdot [n! \cdot (n+1)]^2 < (n+2)(2n+2)! \Leftrightarrow 4^n \cdot (n!)^2 \cdot 4(n+1)^2 < (n+2)(...
- Sat Jan 10, 2009 4:05 pm
- Forum: Clasa a 9-a
- Topic: Vectori necoliniari
- Replies: 2
- Views: 1062
a) Presupunem prin absurd ca \vec{u}+\vec{v}\ \parallel \ 2\vec{u}+\vec{v} \Leftrightarrow (\exists) k \in \mathb{R} astfel incat 2\vec{u}+\vec{v}=k \cdot (\vec{u}+\vec{v}) \Leftrightarrow (2-k)\vec{u}=(k-1)\vec{v} \Leftrightarrow \vec{u}=\frac{k-1}{2-k}\vec{v} \Leftrightarrow \vec{u}\ \parallel\ \v...
- Sat Jan 03, 2009 2:05 am
- Forum: Clasa a VII-a
- Topic: Multiplu din cifre de 1
- Replies: 2
- Views: 408
- Tue Dec 02, 2008 10:24 pm
- Forum: Clasa a IX-a
- Topic: Functia
- Replies: 3
- Views: 298
Cred ca m-am prins ... Fie x=3-x Rezulta f(3-x)+2f(x)=5-2x/\cdot(-2) 2f(3-x)+f(x)=2x-1 -2f(3-x)-4f(x)=-10+4x Adunam relatiile si obtinem : -3f(x)=6x-11 \longrightarrow f(x)=-\frac{6x-11}{3}=\frac{11-6x}{3} f -para \Leftrightarrow f(x)=f(-x) Adica \frac{11-6x}{3}=\frac{11+6x}{3} , fals , rezulta f nu...
- Tue Dec 02, 2008 8:54 pm
- Forum: Clasa a IX-a
- Topic: Functia
- Replies: 3
- Views: 298
Functia
Se da o functie \( f:\mathb{R}\rightarrow\mathb{R} \) , cu \( f(x)+2f(3-x)=2x-1 \) . Sa se cerceteze daca functia este para , impara sau periodica .
- Wed Nov 26, 2008 7:39 am
- Forum: Clasa a IX-a
- Topic: Vectori
- Replies: 5
- Views: 464
- Sat Nov 22, 2008 12:23 am
- Forum: Clasa a VII-a
- Topic: Cardinalul unei multimi
- Replies: 3
- Views: 980
- Thu Nov 20, 2008 9:54 pm
- Forum: Clasa a VII-a
- Topic: Cardinalul unei multimi
- Replies: 3
- Views: 980
Cardinalul unei multimi
Fie multimea \( A= \){\( x\in \mathb{Q}|x=\frac{n^2+1}{2n^2+n+1} \) , unde \( n=\overline{1,100} \)}. Se cere cardinalul multimii A.