http://www.youtube.com/watch?v=EA93Wo7oESU
... interesant ...
Search found 7 matches
- Sat Feb 21, 2009 5:02 pm
- Forum: Chat de voie
- Topic: Inmultirea a doua numere naturale
- Replies: 0
- Views: 348
- Thu Feb 19, 2009 12:41 am
- Forum: Clasa a IX-a
- Topic: Ecuatii fara solutii in Z
- Replies: 4
- Views: 623
- Thu Feb 19, 2009 12:25 am
- Forum: Clasa a 11-a
- Topic: Calcul de limite fara derivate
- Replies: 9
- Views: 1299
Pentru b) folosim Dezvoltarea lu' Taylor pentru functia \( \sin{x} \):
\( \lim_{x \to 0}{\frac{x-\sin x}{x^3}} = \frac{x-(x-\frac{x^3}{3!}+...)}{x^3} = \frac{1}{6} \)
\( \lim_{x \to 0}{\frac{x-\sin x}{x^3}} = \frac{x-(x-\frac{x^3}{3!}+...)}{x^3} = \frac{1}{6} \)
- Thu Feb 19, 2009 12:07 am
- Forum: Analiza matematica
- Topic: Parte intreaga
- Replies: 2
- Views: 804
- Thu Feb 19, 2009 12:03 am
- Forum: Chat de voie
- Topic: Marea teorema a lui Fermat
- Replies: 11
- Views: 1229
Atunci este cazul ca si elevii de clasa a IX-a sa stie despre Marea teorema a lui Fermat
- Wed Feb 18, 2009 11:34 pm
- Forum: Clasa a IX-a
- Topic: Ecuatii fara solutii in Z
- Replies: 4
- Views: 623
Re: Ecuatii fara solutii in Z
Chiar, mai gaseste cineva o solutie la problema asta? Ca daca da, poate reusim sa demonstram si marea teorema a lui Fermat intr-un mod simplist 
- Tue Feb 17, 2009 9:00 pm
- Forum: Clasa a IX-a
- Topic: Ecuatii fara solutii in Z
- Replies: 4
- Views: 623
Re: Ecuatii fara solutii in Z
Presupunem ca ecuatia are solutii in \mathbb{Z} \Rightarrow \exists x,y,z \in \mathbb{Z} a.i. x^{3n} + y^{3n} - z^{3n} + 3x^{3n}y^{3n}z^{3n}= 0 \Leftrightarrow (x^n)^3 + (y^n)^3 (-z^n)^3 - 3(x^n)^3(y^n)^3(-z^n)^3=0\Leftrightarrow \Leftrightarrow \frac{1}{2}(x^n +y^n-z^n)\left[ (x^n-y^n)^2 +(y^n+z^n)...