Search found 7 matches

by Jianu.Ovidiu
Thu Feb 19, 2009 12:41 am
Forum: Clasa a IX-a
Topic: Ecuatii fara solutii in Z
Replies: 4
Views: 623

cred ca ai dreptate :oops:
problema cred ca ar trebui inlocuita cu \( 3x^ny^nz^n \)
by Jianu.Ovidiu
Thu Feb 19, 2009 12:25 am
Forum: Clasa a 11-a
Topic: Calcul de limite fara derivate
Replies: 9
Views: 1299

Pentru b) folosim Dezvoltarea lu' Taylor pentru functia \( \sin{x} \):

\( \lim_{x \to 0}{\frac{x-\sin x}{x^3}} = \frac{x-(x-\frac{x^3}{3!}+...)}{x^3} = \frac{1}{6} \)
by Jianu.Ovidiu
Thu Feb 19, 2009 12:07 am
Forum: Analiza matematica
Topic: Parte intreaga
Replies: 2
Views: 804

Sau altfel:

Impartim relatia prin \( n \), trecem la limita cand \( n \to \infty \) si tinem cont de faptul ca pentru orice \( \alpha \) real are loc realatia \( \lim_{n \to \infty}{\frac{[n \cdot \alpha]}{n}} = \alpha \) si obtinem \( a^3+b^3+c^3 = 3abc \), de unde si concluziile finale...
by Jianu.Ovidiu
Thu Feb 19, 2009 12:03 am
Forum: Chat de voie
Topic: Marea teorema a lui Fermat
Replies: 11
Views: 1229

Atunci este cazul ca si elevii de clasa a IX-a sa stie despre Marea teorema a lui Fermat
by Jianu.Ovidiu
Wed Feb 18, 2009 11:34 pm
Forum: Clasa a IX-a
Topic: Ecuatii fara solutii in Z
Replies: 4
Views: 623

Re: Ecuatii fara solutii in Z

Chiar, mai gaseste cineva o solutie la problema asta? Ca daca da, poate reusim sa demonstram si marea teorema a lui Fermat intr-un mod simplist :P
by Jianu.Ovidiu
Tue Feb 17, 2009 9:00 pm
Forum: Clasa a IX-a
Topic: Ecuatii fara solutii in Z
Replies: 4
Views: 623

Re: Ecuatii fara solutii in Z

Presupunem ca ecuatia are solutii in \mathbb{Z} \Rightarrow \exists x,y,z \in \mathbb{Z} a.i. x^{3n} + y^{3n} - z^{3n} + 3x^{3n}y^{3n}z^{3n}= 0 \Leftrightarrow (x^n)^3 + (y^n)^3 (-z^n)^3 - 3(x^n)^3(y^n)^3(-z^n)^3=0\Leftrightarrow \Leftrightarrow \frac{1}{2}(x^n +y^n-z^n)\left[ (x^n-y^n)^2 +(y^n+z^n)...

Go to advanced search