Calcul de limite fara derivate

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Calcul de limite fara derivate

Post by Claudiu Mindrila »

Calculati fara a folosi functii derivate:

a) \( \lim_{x\to 0}\frac{\left(1+x\right)^{\frac{1}{x}}-e}{x} \).

b) \( \lim_{x\rightarrow 0}\frac{x-\sin x}{x^{3}} \).
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

Le poti face fara derivate, in particular regulile lui l'Hospital numai daca in prealabil dovedesti ca urmatoarele limite de functii exista : \( \lim_{x\to 0}\frac {x-\sin x}{x^3} \) si \( \lim_{x\to 0}\frac {x-\ln(x+1)}{x^2}\ . \)

Sunt si eu curios sa vad daca cineva imi poate dovedi ca aceste limite exista, bineinteles fara derivate ...
Last edited by Virgil Nicula on Mon Jan 19, 2009 7:25 pm, edited 1 time in total.
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

\( f(x)=\frac{x-\sin x}{x^3} \)

Stim ca functia sin este impara, rezulta ca
\( f(-x)=\frac{-x -\sin{(-x)}}{-x^3}=\frac{x-\sin x}{x^3}=f(x) \).

Deci in punctul \( x_0=0 \) limita la stanga si cea la dreapta a lui \( f \) sunt egale. Asadar exista limita in \( x_0=0 \).

\( g(x)=\frac{x-\ln(x+1)}{x^2} \)

Stim ca \( \lim_{x\to 0}\frac{\ln(1+\frac{2x}{1-x})}{\frac{2x}{1-x}}=1 \), adica \( \lim_{x\to 0}{\frac{\ln(1+\frac{2x}{1-x})}{2x}=1 \)

\( \lim_{x\to 0}({-x-\ln(1-x)})=\lim_{x\to 0}(x-\ln(1+x)) \)

Rezulta \( \lim_{x\to 0} g(x)=\lim_{x\to 0} g(-x) \).

Asadar exista limita in \( x_0=0 \).
User avatar
Radu Titiu
Thales
Posts: 155
Joined: Fri Sep 28, 2007 5:05 pm
Location: Mures \Bucuresti

Post by Radu Titiu »

De unde stii ca exista limite laterale ? Daca exista, da, atunci sunt egale.
A mathematician is a machine for turning coffee into theorems.
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

Laurian Filip "a muscat" din "MERE TREABA" -avatarul lui Radu Titiu ... Ne a "demonstrat" ca limita oricarei functii impare in punctul de acumulare \( 0 \) exista... Dovada fara derivate a existentei acestor limite este o problema interesanta, poate ne ajuta universitarii.
Last edited by Virgil Nicula on Wed Jan 28, 2009 11:28 pm, edited 3 times in total.
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

Se poate incerca cu dezvoltarea in serie Taylor a lui sinus in jurul lui 0. Cu asta gasim direct si existenta limitei si limita.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

Daca am sti ca limita exista, asa s-ar putea rezolva b)

b) \( sin(3t)=sin(t)cos(2t)+sin(2t)cos(t)= \)
\( sin(t)(1-2sin^2(t))+2sin(t)cos^2(t)
sin(t)(1-2sin^2(t)+2-2sin^2t)= \)

\( 3sin(t)-4sin^3t \)

Fie \( x=3t \)

\( \lim_{x\to\0}\frac{x-\sin x}{x^3}=\lim_{t\to\0}\frac{3t-\sin(3t)}{27t^3}= \)
\( \lim_{t\to\0}\frac{3t-3\sin t}{27t^3}+\frac{4\sin^3t}{27t^3}=\lim_{t\to\0}\frac{t-\sin t}{9t^3}+\frac{4}{27} \cdot \left( \frac{\sin t}{t} \right)^3 \)

Fie \( l=\lim_{x\to\0}\frac{x-\sin x}{x^3} \).

Rezulta in relatia de mai sus ca:

\( l=\frac{l}{9}+\frac{4}{27} \)
\( l=\frac{1}{6} \)
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

Frumos, Laurian Filip ! Intr-adevar, aceasta-i solutia daca in ipoteza se afirma (numai !) existenta limitei si ca este finita. In cartea mea de Analiza matematica de la Ed. TEORA, in debutul capitolului "Regulile lui l'Hospital" sunt numeroase asemenea exemple, rezolvate in ipoteza mentionata si fara regulile lui l"Hospital, care limite, in afara acestei ipoteze, nu se pot face decat cu regulile l'Hospital repetate chiar de doua, trei ori. Insa problema care se pune aici este aceasta : dovada fara derivate a existentei acestor limite. Este o problema interesanta si repet, poate ne ajuta universitarii.
Jianu.Ovidiu
Arhimede
Posts: 7
Joined: Mon Feb 16, 2009 8:33 pm

Post by Jianu.Ovidiu »

Pentru b) folosim Dezvoltarea lu' Taylor pentru functia \( \sin{x} \):

\( \lim_{x \to 0}{\frac{x-\sin x}{x^3}} = \frac{x-(x-\frac{x^3}{3!}+...)}{x^3} = \frac{1}{6} \)
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

Taylor inseamna in primul rand derivate ... Asa ca mai usor era cu l'Hospital (pana gaseai seria
corespunzatoare, o terminai deja !). Aici este alta problema ... Citeste te rog cu atentie mesajele precedente.
Post Reply

Return to “Clasa a 11-a”