Calcul de limite fara derivate
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Calcul de limite fara derivate
Calculati fara a folosi functii derivate:
a) \( \lim_{x\to 0}\frac{\left(1+x\right)^{\frac{1}{x}}-e}{x} \).
b) \( \lim_{x\rightarrow 0}\frac{x-\sin x}{x^{3}} \).
a) \( \lim_{x\to 0}\frac{\left(1+x\right)^{\frac{1}{x}}-e}{x} \).
b) \( \lim_{x\rightarrow 0}\frac{x-\sin x}{x^{3}} \).
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
Le poti face fara derivate, in particular regulile lui l'Hospital numai daca in prealabil dovedesti ca urmatoarele limite de functii exista : \( \lim_{x\to 0}\frac {x-\sin x}{x^3} \) si \( \lim_{x\to 0}\frac {x-\ln(x+1)}{x^2}\ . \)
Sunt si eu curios sa vad daca cineva imi poate dovedi ca aceste limite exista, bineinteles fara derivate ...
Sunt si eu curios sa vad daca cineva imi poate dovedi ca aceste limite exista, bineinteles fara derivate ...
Last edited by Virgil Nicula on Mon Jan 19, 2009 7:25 pm, edited 1 time in total.
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
\( f(x)=\frac{x-\sin x}{x^3} \)
Stim ca functia sin este impara, rezulta ca
\( f(-x)=\frac{-x -\sin{(-x)}}{-x^3}=\frac{x-\sin x}{x^3}=f(x) \).
Deci in punctul \( x_0=0 \) limita la stanga si cea la dreapta a lui \( f \) sunt egale. Asadar exista limita in \( x_0=0 \).
\( g(x)=\frac{x-\ln(x+1)}{x^2} \)
Stim ca \( \lim_{x\to 0}\frac{\ln(1+\frac{2x}{1-x})}{\frac{2x}{1-x}}=1 \), adica \( \lim_{x\to 0}{\frac{\ln(1+\frac{2x}{1-x})}{2x}=1 \)
\( \lim_{x\to 0}({-x-\ln(1-x)})=\lim_{x\to 0}(x-\ln(1+x)) \)
Rezulta \( \lim_{x\to 0} g(x)=\lim_{x\to 0} g(-x) \).
Asadar exista limita in \( x_0=0 \).
Stim ca functia sin este impara, rezulta ca
\( f(-x)=\frac{-x -\sin{(-x)}}{-x^3}=\frac{x-\sin x}{x^3}=f(x) \).
Deci in punctul \( x_0=0 \) limita la stanga si cea la dreapta a lui \( f \) sunt egale. Asadar exista limita in \( x_0=0 \).
\( g(x)=\frac{x-\ln(x+1)}{x^2} \)
Stim ca \( \lim_{x\to 0}\frac{\ln(1+\frac{2x}{1-x})}{\frac{2x}{1-x}}=1 \), adica \( \lim_{x\to 0}{\frac{\ln(1+\frac{2x}{1-x})}{2x}=1 \)
\( \lim_{x\to 0}({-x-\ln(1-x)})=\lim_{x\to 0}(x-\ln(1+x)) \)
Rezulta \( \lim_{x\to 0} g(x)=\lim_{x\to 0} g(-x) \).
Asadar exista limita in \( x_0=0 \).
- Radu Titiu
- Thales
- Posts: 155
- Joined: Fri Sep 28, 2007 5:05 pm
- Location: Mures \Bucuresti
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
Laurian Filip "a muscat" din "MERE TREABA" -avatarul lui Radu Titiu ... Ne a "demonstrat" ca limita oricarei functii impare in punctul de acumulare \( 0 \) exista... Dovada fara derivate a existentei acestor limite este o problema interesanta, poate ne ajuta universitarii.
Last edited by Virgil Nicula on Wed Jan 28, 2009 11:28 pm, edited 3 times in total.
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Se poate incerca cu dezvoltarea in serie Taylor a lui sinus in jurul lui 0. Cu asta gasim direct si existenta limitei si limita.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
Daca am sti ca limita exista, asa s-ar putea rezolva b)
b) \( sin(3t)=sin(t)cos(2t)+sin(2t)cos(t)= \)
\( sin(t)(1-2sin^2(t))+2sin(t)cos^2(t)
sin(t)(1-2sin^2(t)+2-2sin^2t)= \)
\( 3sin(t)-4sin^3t \)
Fie \( x=3t \)
\( \lim_{x\to\0}\frac{x-\sin x}{x^3}=\lim_{t\to\0}\frac{3t-\sin(3t)}{27t^3}= \)
\( \lim_{t\to\0}\frac{3t-3\sin t}{27t^3}+\frac{4\sin^3t}{27t^3}=\lim_{t\to\0}\frac{t-\sin t}{9t^3}+\frac{4}{27} \cdot \left( \frac{\sin t}{t} \right)^3 \)
Fie \( l=\lim_{x\to\0}\frac{x-\sin x}{x^3} \).
Rezulta in relatia de mai sus ca:
\( l=\frac{l}{9}+\frac{4}{27} \)
\( l=\frac{1}{6} \)
b) \( sin(3t)=sin(t)cos(2t)+sin(2t)cos(t)= \)
\( sin(t)(1-2sin^2(t))+2sin(t)cos^2(t)
sin(t)(1-2sin^2(t)+2-2sin^2t)= \)
\( 3sin(t)-4sin^3t \)
Fie \( x=3t \)
\( \lim_{x\to\0}\frac{x-\sin x}{x^3}=\lim_{t\to\0}\frac{3t-\sin(3t)}{27t^3}= \)
\( \lim_{t\to\0}\frac{3t-3\sin t}{27t^3}+\frac{4\sin^3t}{27t^3}=\lim_{t\to\0}\frac{t-\sin t}{9t^3}+\frac{4}{27} \cdot \left( \frac{\sin t}{t} \right)^3 \)
Fie \( l=\lim_{x\to\0}\frac{x-\sin x}{x^3} \).
Rezulta in relatia de mai sus ca:
\( l=\frac{l}{9}+\frac{4}{27} \)
\( l=\frac{1}{6} \)
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
Frumos, Laurian Filip ! Intr-adevar, aceasta-i solutia daca in ipoteza se afirma (numai !) existenta limitei si ca este finita. In cartea mea de Analiza matematica de la Ed. TEORA, in debutul capitolului "Regulile lui l'Hospital" sunt numeroase asemenea exemple, rezolvate in ipoteza mentionata si fara regulile lui l"Hospital, care limite, in afara acestei ipoteze, nu se pot face decat cu regulile l'Hospital repetate chiar de doua, trei ori. Insa problema care se pune aici este aceasta : dovada fara derivate a existentei acestor limite. Este o problema interesanta si repet, poate ne ajuta universitarii.
-
Jianu.Ovidiu
- Arhimede
- Posts: 7
- Joined: Mon Feb 16, 2009 8:33 pm
Pentru b) folosim Dezvoltarea lu' Taylor pentru functia \( \sin{x} \):
\( \lim_{x \to 0}{\frac{x-\sin x}{x^3}} = \frac{x-(x-\frac{x^3}{3!}+...)}{x^3} = \frac{1}{6} \)
\( \lim_{x \to 0}{\frac{x-\sin x}{x^3}} = \frac{x-(x-\frac{x^3}{3!}+...)}{x^3} = \frac{1}{6} \)
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm