Search found 14 matches

by zeta
Sun Apr 19, 2009 10:56 am
Forum: Clasa a IX-a
Topic: Proprietate a partii intregi
Replies: 1
Views: 234

Punand x:=f(x) obtinem f(f(f(x)))=[f(x)] Aplicand f obtinem f(f(f(x)))=f([x]) De aici rezulta ca f(n) este intreg pentru orice intreg n . Daca pentru orice a,b reale am avea |f(a)-f(b)|<|sin{a}-sin{b}| , cum |sin{a}-sin{b}|=2|sin{\frac{a-b}{2}}cos{\frac{a+b}{2}}|<|a-b|[\tex], deoarece sin{x}<x,\ x\i...
by zeta
Sat Apr 04, 2009 10:14 am
Forum: Clasa a X-a
Topic: Progresie
Replies: 0
Views: 213

Progresie

Aratati ca nu exista o progresie aritmetica neconstanta de numere naturale avand toti termenii puteri netriviale de numere naturale.
by zeta
Sat Apr 04, 2009 10:13 am
Forum: Clasa a X-a
Topic: GM 2/2009
Replies: 1
Views: 313

GM 2/2009

Fie un triunghi ABC, D este punctul de tangenta al cercului inscris cu latura (BC) si \( R_1,R_2 \) razele cercurilor inscrise in triunghiurile ABD, respectiv ACD. Aratati ca \( sqrt{\frac{R_1}{R_2}}+sqrt{\frac{R_2}{R_1}}=\frac{2}{\sin ADB} \).
by zeta
Sat Apr 04, 2009 10:10 am
Forum: Clasa a X-a
Topic: GM 1/2009
Replies: 0
Views: 281

GM 1/2009

Cate numere din multimea {1,2,...,n}, \( n\ge 2 \), divid pe \( 5^{n!}-3^{n!} \)?
by zeta
Sun Mar 15, 2009 9:32 pm
Forum: Clasa a X-a
Topic: Inegalitate in 3 variabile conditionata
Replies: 3
Views: 480

Daca notam \( S=a+b+c \), atunci tinand cont ca \( ab^2+bc^2+ca^2\leq\frac{4S^3}{27}-abc \) (din solutia de pe mathlinks) rezulta ca membrul stang al inegalitatii este \( \geq\frac{1}{6}(\frac{81S-4S^3}{27}+abc) \).
by zeta
Fri Mar 13, 2009 5:43 pm
Forum: Clasa a IX-a
Topic: Inegalitate ,,draguta''
Replies: 4
Views: 446

Mai sus am aplicat inegalitatea lui Jensen.
by zeta
Fri Mar 13, 2009 5:42 pm
Forum: Clasa a IX-a
Topic: Inegalitate ,,draguta''
Replies: 4
Views: 446

\( \sum{\frac{1}{2}(\frac{a}{b+c})^3\frac{b+c}{a+b+c}}\geq\ (\sum{\frac{1}{2}\frac{a(b+c)}{(b+c)(a+b+c)}})^3=\frac{1}{8} \), de unde rezulta ineg din enunt.
by zeta
Fri Mar 13, 2009 5:09 pm
Forum: Clasa a X-a
Topic: Inegalitate in 3 variabile conditionata
Replies: 3
Views: 480

Observatie: daca nu ma insel, inegalitatea este adevarata ptr orice \( a,b,c>0,\ a+b+c\in (k,3] \), unde \( k \)este aprox \( 2,1742... \).
by zeta
Fri Mar 13, 2009 5:01 pm
Forum: Clasa a IX-a
Topic: Inegalitate conditionata cu interpretare trigonometrica
Replies: 2
Views: 306

Avem \frac{a^2}{tgA}+\frac{b^2}{tgB}+\frac{c^2}{tgC}=4S\geq\frac{4p^2}{tgAtgBtgC}. Dar S=p^2tg\frac{A}{2}tg\frac{B}{2}tg\frac{C}{2} si atunci tinand cont ca tgA=\frac{2tg\frac{A}{2}}{1-tg^2{\frac{A}{2}} si ca \sum{tg\frac{A}{2}tg\frac{B}{2}}=1 , notand x=tg^2{\frac{A}{2}} si analoagele, obtinem ineg...
by zeta
Fri Mar 13, 2009 11:03 am
Forum: Clasa a X-a
Topic: Poligon convex, punct de minim
Replies: 2
Views: 563

Poligon convex, punct de minim

Fie un poligon convex \( A_1A_2..A_n \) si ptr fiecare punct \( M \) din planul sau notam \( S(M)=MA_1+MA_2+..+MA_n. \) Aratati ca suma e minima ptr un punct \( T \) din interiorul poligonului, ai \( \angle A_1TA_2=..=\angle A_nTA_1=\frac{2\pi}{n} \).
by zeta
Fri Mar 13, 2009 10:58 am
Forum: Clasa a IX-a
Topic: Functie
Replies: 0
Views: 194

Functie

Fie o functie \( f:A\rightarrow A \) astfel incat \( f(x^2-y^2)+f(2xy)=f(x^2+y^2),\ x,\ y\in A \). Aflati functia in fiecare din cazurile \( A=\mathbb{N,Z,Q,R}. \)
by zeta
Fri Mar 13, 2009 9:39 am
Forum: Clasa a X-a
Topic: Inegalitate in 3 variabile conditionata
Replies: 3
Views: 480

Inegalitate in 3 variabile conditionata

Fie \( a,b,c>0 \) ai \( a+b+c=3. \) Atunci \( \frac{a}{2+b^3}+\frac{b}{2+c^3}+\frac{c}{2+b^3}\geq\frac{1}{6}(5+abc) \).
by zeta
Fri Mar 13, 2009 9:33 am
Forum: Clasa a IX-a
Topic: Subiectul 3 OJM IX 2009
Replies: 9
Views: 901

\( \frac{x}{x+y}(\frac{a}{x})^3+\frac{y}{x+y}(\frac{b}{y})^3\geq(\frac{x}{x+y}\frac{a}{x}+\frac{y}{x+y}\frac{b}{y})^3 \)
de unde rezulta ineg din enuntz.
by zeta
Fri Mar 13, 2009 9:22 am
Forum: Clasa a IX-a
Topic: Inegalitate conditionata cu interpretare trigonometrica
Replies: 2
Views: 306

Inegalitate conditionata cu interpretare trigonometrica

Fie \( x,y,z\in (0,1) \) astfel incat \( \sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1 \). Aratati ca avem \( 8xyz\geq (1-x)(1-y)(1-z) \).

Observatie: incercati o abordare trigonometrica.

Go to advanced search