Daca a,b,c sunt pozitive atunci :
\( \frac{a^3}{(b+c)^2}+\frac{b^3}{(c+a)^2}+\frac{c^3}{(a+b)^2}\ge\frac{a+b+c}{4} \)
Gh. Stoica, Revista Arhimede 1-6/2008
Inegalitate ,,draguta''
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Fara a leza generalitatea, putem presupune ca \( a \le b\le c \). Atunci, aplicand inegalitatea rearanjamentelor, avem:
\( \left|\begin{array}{c}
a^{3}\le b^{3}\le c^{3}\\
\frac{1}{\left(b+c\right)^{2}}\le\frac{1}{\left(c+a\right)^{2}}\le\frac{1}{\left(a+b\right)^{2}}\end{array}\right|\Longrightarrow\left|\begin{array}{c}
\sum\frac{a^{3}}{\left(c+a\right)^{2}}\le\sum\frac{a^{3}}{\left(b+c\right)^{2}}\\
\sum\frac{c^{3}}{\left(c+a\right)^{2}}\le\sum\frac{a^{3}}{\left(b+c\right)^{2}}\end{array}\right|\oplus\Longrightarrow\sum\frac{a^{3}}{\left(b+c\right)^{2}}\ge\frac{1}{2}\cdot\sum\frac{a^{3}+c^{3}}{\left(a+c\right)^{2}} \).
Acum, aplicand inegalitatea lui Cebisev, avem:
\( \frac{1}{2}\cdot\sum\frac{a^{3}+c^{3}}{\left(a+c\right)^{2}}\ge\frac{1}{2}\cdot\sum\frac{\left(a+c\right)\left(a^{2}+c^{2}\right)}{2\left(a+c\right)^{2}}\ge\frac{1}{2}\cdot\sum\frac{\left(a+c\right)\left(a+c\right)^{2}}{4\left(a+c\right)^{2}}=\frac{1}{2}\cdot\sum\frac{a+c}{4}=\frac{\sum\frac{a}{2}}{2}=\sum\frac{a}{4} \), ceea ce trebuia aratat.
\( \left|\begin{array}{c}
a^{3}\le b^{3}\le c^{3}\\
\frac{1}{\left(b+c\right)^{2}}\le\frac{1}{\left(c+a\right)^{2}}\le\frac{1}{\left(a+b\right)^{2}}\end{array}\right|\Longrightarrow\left|\begin{array}{c}
\sum\frac{a^{3}}{\left(c+a\right)^{2}}\le\sum\frac{a^{3}}{\left(b+c\right)^{2}}\\
\sum\frac{c^{3}}{\left(c+a\right)^{2}}\le\sum\frac{a^{3}}{\left(b+c\right)^{2}}\end{array}\right|\oplus\Longrightarrow\sum\frac{a^{3}}{\left(b+c\right)^{2}}\ge\frac{1}{2}\cdot\sum\frac{a^{3}+c^{3}}{\left(a+c\right)^{2}} \).
Acum, aplicand inegalitatea lui Cebisev, avem:
\( \frac{1}{2}\cdot\sum\frac{a^{3}+c^{3}}{\left(a+c\right)^{2}}\ge\frac{1}{2}\cdot\sum\frac{\left(a+c\right)\left(a^{2}+c^{2}\right)}{2\left(a+c\right)^{2}}\ge\frac{1}{2}\cdot\sum\frac{\left(a+c\right)\left(a+c\right)^{2}}{4\left(a+c\right)^{2}}=\frac{1}{2}\cdot\sum\frac{a+c}{4}=\frac{\sum\frac{a}{2}}{2}=\sum\frac{a}{4} \), ceea ce trebuia aratat.
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm