Search found 601 matches
- Sun Sep 19, 2010 10:27 am
- Forum: Clasa a X-a
- Topic: Inegalitate cu un punct in interiorul triunghiului
- Replies: 2
- Views: 196
- Sun Sep 05, 2010 6:34 pm
- Forum: Inegalitati
- Topic: O inegalitate cu 1/cos(A/2) intr-un triunghi
- Replies: 3
- Views: 162
- Mon Jun 14, 2010 4:09 am
- Forum: Clasa a X-a
- Topic: Rafinare a inegalitatii lui Gerettsen
- Replies: 7
- Views: 390
Re: Rafinare a inegalitatii lui Gerettsen
Aratati ca in orice triunghi are loc inegalitatea : a^2+b^2+c^2 \leq 8R^2+4r^2 \cdot\frac{2p}{3\sqrt{3}R} De ce am impresia ca este echivalenta cu inegalitatea (problema 11341) din AMM??! Tin minte ca la fel am facut-o si eu. Am aplicat Popoviciu pentru functia \tan x pe intervalul \left(0, \frac{\...
- Sat Mar 27, 2010 4:43 am
- Forum: Clasa a IX-a
- Topic: alta inegalitate ONM SHL 2004
- Replies: 2
- Views: 193
Re: SHL 2004
Daca a,\ b,\ c\ge0 atunci \sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+\left(a+b+c\right)^{2}\ge4\sqrt{3abc\left(a+b+c\right)} . Valentin Vornicu, lista scurta, 2004 AM\ge GM LHS=sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+\frac{(a+b+c)^2}{3}+\frac{(a+b+c)^2}{3}+\frac{(a+b+c)^2}{3}\ge 4\s...
- Tue Mar 23, 2010 11:51 pm
- Forum: Inegalitati
- Topic: inegalitatea cu enunt elementar
- Replies: 1
- Views: 296
inegalitatea cu enunt elementar
Fie \( a, b, c \) numere reale strict pozitive. Sa se arate ca
\( \sum_{cyc}\frac{bc}{(b+c)^2}\leq\frac{1}{4}+\frac{4abc}{\prod (a+b)} \).
\( \sum_{cyc}\frac{bc}{(b+c)^2}\leq\frac{1}{4}+\frac{4abc}{\prod (a+b)} \).
- Tue Mar 23, 2010 2:41 pm
- Forum: Chat de voie
- Topic: Grigori Perelman..a refuzat si premiul Clay
- Replies: 0
- Views: 319
Grigori Perelman..a refuzat si premiul Clay
Dupa ce a declinat medalia Fields in 2006 care i-a fost decernata la Congresul Mondial al Matematicienilor de la Madrid in 2006, Perelman a refuzat recent si premiul Insututului Clay Mathematics de 1 milion de dolari. http://stirileprotv.ro/stiri/international/vezi-aici-cine-este-omul-care-a-refuzat...
- Fri Mar 19, 2010 9:00 pm
- Forum: Chat de voie
- Topic: Cum isi trateaza Romania cel mai mare biochimist in viata...
- Replies: 1
- Views: 206
Pentru cei care nu stiu ce a facut Gheorghe Benga, aruncati o privire la urmatorul link: http://gheorghebenga.files.wordpress.co ... ersala.jpg
- Fri Mar 19, 2010 8:28 pm
- Forum: Chat de voie
- Topic: Cum isi trateaza Romania cel mai mare biochimist in viata...
- Replies: 1
- Views: 206
- Thu Mar 18, 2010 7:26 pm
- Forum: Ecuatii diferentiale cu derivate partiale
- Topic: inegalitatea gradienti in W_0^{1, p}(\Omega)
- Replies: 0
- Views: 194
inegalitatea gradienti in W_0^{1, p}(\Omega)
Fie \( u, v\in W_{0}^{1, p}(\Omega) \), unde \( \Omega\subset\mathbb{R}^{N} \) este o submultime deschisa, nevida si marginita. Sa se arate ca, daca \( p\geq 2 \), atunci avem
\( \left|\nabla\left(\left(\frac{u^p+v^p}{2}\right)^{1/p}\right)\right| ^p\leq\frac{1}{2}|\nabla u|^p+\frac{1}{2}|\nabla v|^p. \)
\( \left|\nabla\left(\left(\frac{u^p+v^p}{2}\right)^{1/p}\right)\right| ^p\leq\frac{1}{2}|\nabla u|^p+\frac{1}{2}|\nabla v|^p. \)
- Thu Mar 18, 2010 9:41 am
- Forum: Combinatorica si teoria grafurilor
- Topic: Nr. de expresii obtinute folosind reuniunea si intersectia
- Replies: 1
- Views: 217
- Wed Mar 17, 2010 9:35 pm
- Forum: Analiza matematica
- Topic: functie
- Replies: 15
- Views: 1001
- Tue Mar 09, 2010 12:55 pm
- Forum: Ecuatii diferentiale cu derivate partiale
- Topic: boundary value problem
- Replies: 0
- Views: 156
boundary value problem
Fie \( \Omega \) un domeniu deschis si marginit din \( R^d \). Consideram \( u\in C^2(\Omega)\cap C^0(\overline{\Omega}) \) astfel incat sa avem
\( \Delta u=u^3, x\in\Omega \) si \( u=0, x\in\partial\Omega \).
Sa se arate ca \( u=0 \).
\( \Delta u=u^3, x\in\Omega \) si \( u=0, x\in\partial\Omega \).
Sa se arate ca \( u=0 \).
- Tue Mar 09, 2010 12:42 pm
- Forum: Ecuatii diferentiale cu derivate partiale
- Topic: principiu tare de maxim; Alexandrov-Bakelman
- Replies: 0
- Views: 93
principiu tare de maxim; Alexandrov-Bakelman
Presupunem ca u\in C^2(\Omega)\cap C^0(\overline{\Omega}) satisface Lu(x):=\sum_{i, j=1}^{d}a_{ij}(x)\frac{\partial u}{\partial x_{i}\partial x_{j}}\geq f(x), unde matricea a_{ij}(x) este pozitiv definita, simetrica pentru orice x\in\Omega . Mai mult, presupunem ca \int_{\Omega}\frac{|f(x)|^d}{\det ...
- Wed Mar 03, 2010 2:56 am
- Forum: Analiza matematica
- Topic: calcul integrala definita
- Replies: 4
- Views: 391
calcul integrala definita
Sa se calculeze integrala:
\( \int_0^{\pi/4}\log\left(\frac{1+\sin t}{1-\sin t}\right)dt \).
\( \int_0^{\pi/4}\log\left(\frac{1+\sin t}{1-\sin t}\right)dt \).
- Mon Feb 22, 2010 2:52 am
- Forum: Algebra
- Topic: Problema destul de grea
- Replies: 3
- Views: 529
- Fri Feb 19, 2010 2:49 pm
- Forum: Analiza reala
- Topic: exista functie diferentiabila care pe Q in Q si R-Q?
- Replies: 0
- Views: 154
exista functie diferentiabila care pe Q in Q si R-Q?
Exista o functie diferentiabila \( f:\mathbb{R}\to\mathbb{R} \) astfel incat \( f(\mathbb{Q})\subset\mathbb{Q} \) si \( f^{\prime}(\mathbb{Q})\subset\mathbb{R}-\mathbb{Q} \)?
- Fri Feb 19, 2010 2:46 pm
- Forum: Analiza matematica
- Topic: Zerouri consecutive ale sumei derivate
- Replies: 1
- Views: 210
Zerouri consecutive ale sumei derivate
Fie \( f, g \) doua functii diferentiabile pe un interval deschis. Sa se arate ca intre doua zerouri consecutive ale lui \( f \) exista un zerou al lui \( f^{\prime}+fg^{\prime} \).