Search found 11 matches

by deleter
Sat Mar 22, 2008 2:58 pm
Forum: Clasa a VI-a
Topic: abcd
Replies: 4
Views: 919

(nu sunt numere naturale nenule! , sunt cifre)
\( a+d=x \)
\( b+c=x \)
\( \overline{abcd}=1000a+d+100b+10c=1000x+110x=1110x=> \)\( 1110 \)nu este divizibil=>x \( | 40 => x\in {1,2,4,8}=> \) \( a \) \( diferit \) \( de \) \( 0 \) \( =>a=1 \),\( d=0 \)
by deleter
Fri Mar 21, 2008 9:44 pm
Forum: Clasa a V-a
Topic: Concurs "Teodor Topan" - problema 1
Replies: 2
Views: 862

b) \( (3^{2011}:3^{5}+5^{59}\cdot 5^{7}): \)\( (2^{10}+3^{2006}+5^{66}-2^{10})=(3^{2006}+5^{66}): \)\( (3^{2006}+5^{66})=1 \)
by deleter
Fri Mar 21, 2008 9:39 pm
Forum: Clasa a V-a
Topic: Concurs "Teodor Topan" - problema 1
Replies: 2
Views: 862

a)\( 2007\cdot(2008-2006)-2\cdot2006 \)\( = \)\( 2\cdot(2007-2006) \) \( = \) \( 2 \)
by deleter
Fri Mar 21, 2008 7:51 pm
Forum: Clasa a VI-a
Topic: Patrat perfect !
Replies: 5
Views: 1098

Oricum , multumesc pentru indicatie , Domnu` Nicula
by deleter
Fri Mar 21, 2008 7:50 pm
Forum: Clasa a VI-a
Topic: Patrat perfect !
Replies: 5
Views: 1098

Ooops! am gresit la enunt ! trebuie sa se afle numarul :) , nu este voie sa se posteze exercitii care se pot da la o olimpiada , sau de difictultate mare ?! problema asta am postato , dar am facut-o :D
by deleter
Fri Mar 21, 2008 7:48 pm
Forum: Clasa a V-a
Topic: 11 numere naturale distincte
Replies: 1
Views: 670

Sa presupunem ca numerele noastre sunt cele mai mici posibile , diferite de 0 ! => 1+2+3+...+11=(11+1)*11:2=12*11:2=6*11=66 => Un numar mai mare sau egal cu 8 trebuie marit cu 4 , deoarece , daca ar fi mai mic decat 8 atunci 1+4 ; 2+4 ; ... ; 7+4 . S-ar mai regasi ! => 420=2^{2}*3*5*7=4*3*5*7 => De ...
by deleter
Fri Mar 21, 2008 7:16 pm
Forum: Clasa a VI-a
Topic: Patrat perfect !
Replies: 5
Views: 1098

Patrat perfect !

Se da numarul de forma \( \bar {aabb} \) , patrat perfect , in baza 10.
by deleter
Fri Mar 21, 2008 2:48 pm
Forum: Clasa a VI-a
Topic: parageozilizm!!!
Replies: 1
Views: 643

"=>"EF||BC secanta (EB) => \hat E \equiv \hat B (corespondete) 1 EF||BC secanta (FC) => \hat F \equiv \hat C (corespondete) 2 Din 1 si 2 => \hat A \equiv \hat E \equiv \hat F =>\triangle AEF echilateral =>AE \equiv EF => BE + EF = BE + FA = AB => [AB]\equiv[BC] "<=" Fie D mijloc...
by deleter
Fri Mar 21, 2008 2:12 pm
Forum: Clasa a VI-a
Topic: Concursul "Teodor Topan" - problema 1
Replies: 3
Views: 993

rezolvare

\( n=2^{2005}*(2-1)-2^{2004}-2^{2003}=2^{2004}*(2-1) - 2^{2003} = 2^{2003}*(2-1)=2^{2003} \)
\( \frac{n}{x}=\frac{8^{667}}{5} => (2^{3})^{667}*x = 2^{2003}*5 => 2^{2001}x=2^{2003}*5 => 2^{2003}:2^{2001}=x:5 => 4=x:5 => x=20 \)
by deleter
Fri Mar 21, 2008 2:09 pm
Forum: Clasa a VI-a
Topic: Concursul "Teodor Topan" - problema 1
Replies: 3
Views: 993

am gresit :D

11a+13=35 => 11a = 22 => a=2
by deleter
Fri Mar 21, 2008 2:08 pm
Forum: Clasa a VI-a
Topic: Concursul "Teodor Topan" - problema 1
Replies: 3
Views: 993

rezolvare

\( 11a + 13 = 35 => 11a=22 => a=2 \)

Go to advanced search