Concursul "Teodor Topan" - problema 1

Moderators: Bogdan Posa, Laurian Filip

Post Reply
User avatar
maky
Pitagora
Posts: 80
Joined: Thu Sep 27, 2007 7:15 pm
Location: bucuresti

Concursul "Teodor Topan" - problema 1

Post by maky »

1. a) Aflati \( a \) daca \( \bar{0,1\left(a\right)}+\bar{0,a\left(3\right)}=0,3\left(5\right) \)
b) Se da \( n=2^{2006}-2^{2005}-2^{2004}-2^{2003} \). Aflati \( x \) din proportia: \( \frac{n}{x}=\frac{8^{667}}{5} \)
Crisan Georgeta, Simleul Silvaniei
deleter
Euclid
Posts: 11
Joined: Thu Mar 20, 2008 7:13 pm
Location: Bucuresti

rezolvare

Post by deleter »

\( 11a + 13 = 35 => 11a=22 => a=2 \)
Last edited by deleter on Fri Mar 21, 2008 6:09 pm, edited 11 times in total.
deleter
Euclid
Posts: 11
Joined: Thu Mar 20, 2008 7:13 pm
Location: Bucuresti

am gresit :D

Post by deleter »

11a+13=35 => 11a = 22 => a=2
deleter
Euclid
Posts: 11
Joined: Thu Mar 20, 2008 7:13 pm
Location: Bucuresti

rezolvare

Post by deleter »

\( n=2^{2005}*(2-1)-2^{2004}-2^{2003}=2^{2004}*(2-1) - 2^{2003} = 2^{2003}*(2-1)=2^{2003} \)
\( \frac{n}{x}=\frac{8^{667}}{5} => (2^{3})^{667}*x = 2^{2003}*5 => 2^{2001}x=2^{2003}*5 => 2^{2003}:2^{2001}=x:5 => 4=x:5 => x=20 \)
Post Reply

Return to “Clasa a VI-a”