Functie bijectiva
Functie bijectiva
Sa se arate ca functia f:\( \mathbb{C} \)\( \longrightarrow \)\( \mathbb{C} \), f(z)= z+2\( \bar{z} \) este bijectiva.
-
andy crisan
- Pitagora
- Posts: 56
- Joined: Sun Dec 28, 2008 5:50 pm
- Location: Pitesti
Fie y \( \in \mathbb{C} \) a.i \( y=a_2+ib_2 , a_2,b_2\in \mathbb{R} \) si fie \( z=a_1+ib_1, a_1, b_1 \in \mathbb{R} \) astfel incat \( f(z)=y \Rightarrow 3a_1-ib_1=a_2+ib_2 \Rightarrow a_2=3a
si b_2=-b_1 \Rightarrow a_2 si b_2 sunt unice \Rightarrow ecuatia f(z)=y \) are solutie unica \( \forall y \in \mathbb{C} \Rightarrow \) f este bijectiva
si b_2=-b_1 \Rightarrow a_2 si b_2 sunt unice \Rightarrow ecuatia f(z)=y \) are solutie unica \( \forall y \in \mathbb{C} \Rightarrow \) f este bijectiva