Fie sirul \( (a_n)_{n\ge 1} \) dat de \( a_1=1 \) si \( a_{n+1}=\frac{a_n^2+2}{n+1}, \forall n\in\mathbb{N}. \)
Sa se calculeze \( \displaystyle\lim_{n\to\infty}\frac{a_1+a_2+\cdots+a_n}{1+\frac{1}{2}+\cdots +\frac{1}{n}} \).
GMB, subiectul 4, OLM 2009 Constanta
Sir dat printr-o relatie de recurenta
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
-
Andrei Velicu
- Euclid
- Posts: 27
- Joined: Wed Oct 17, 2007 9:20 am
- Location: Constanta
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)