a) Descompuneti in factori expresia \( 3a^{4}-2a^{3}b-2a^{2}b^{2}-2ab^{3}+3b^{4} \).
b) Aratati ca pentru orice numere reale \( a,b\in\mathbb{R} \) are loc inegalitatea \( \frac{a^{4}+b^{4}}{2}\ge\left(\frac{a+b}{2}\right)^{2}\cdot\frac{a^{2}+b^{2}}{2} \).
Concursul "TMMATE", 2009
Descompunere si inegalitate
Moderators: Bogdan Posa, Laurian Filip
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Descompunere si inegalitate
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
b) Folosim rezultatul cunoscut:
\( \frac{a^n+b^n}{2} \ge (\frac{a+b}{2})^n \)
Avem \( \frac{a^4+b^4}{2}\ge (\frac{a^2+b^2}{2})^2=\frac{a^2+b^2}{2}\cdot \frac{a^2+b^2}{2} \) si aplicand inca o data avem \( \frac{a^4+b^4}{2}\ge (\frac{a+b}{2})^2 \cdot \frac{a^2+b^2}{2} \).
\( \frac{a^n+b^n}{2} \ge (\frac{a+b}{2})^n \)
Avem \( \frac{a^4+b^4}{2}\ge (\frac{a^2+b^2}{2})^2=\frac{a^2+b^2}{2}\cdot \frac{a^2+b^2}{2} \) si aplicand inca o data avem \( \frac{a^4+b^4}{2}\ge (\frac{a+b}{2})^2 \cdot \frac{a^2+b^2}{2} \).
. A snake that slithers on the ground can only dream of flying through the air.