Inegalitate conditionata

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Inegalitate conditionata

Post by alex2008 »

\( a,b,c>0 \) si \( a^2+b^2+c^2=3 \) . Aratati ca \( \sum_{cyc}\frac{a^2+b^2}{a+b}\ge 3. \)
. A snake that slithers on the ground can only dream of flying through the air.
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Re: Inegalitate conditionata

Post by Virgil Nicula »

Inegalitatea ta este mai "tare" decat \( a+b+c\ \le\ \sum\ \frac {b^2+c^2}{b+c} \) (asta este simplu de dovedit !).

Eu zic sa scriem omogen inegalitatea propusa, "nevopsita". Arata mai frumos asa (o parere personala !):
Daca numerele \( a \) , \( b \) , \( c \) sunt pozitive, atunci \( a+b+c\ \le\ \overline {\underline {\left\|\ \sqrt {3\left(a^2+b^2+c^2\right)}\ \le\ \sum\ \frac {b^2+c^2}{b+c}\ \right\|}}\ . \)
Last edited by Virgil Nicula on Wed Jan 28, 2009 11:21 pm, edited 1 time in total.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Re: Inegalitate conditionata

Post by Marius Mainea »

Daca numerele \( a \) , \( b \) , \( c \) sunt pozitive, atunci \( a+b+c\ \le\ \overline {\underline {\left\|\ \sqrt {3\left(a^2+b^2+c^2\right)}\ \le\ \sum\ \frac {b^2+c^2}{b+c}\ \right\|}}\ . \)
A doua inegalitate este echivalenta cu:

\( \sqrt{3(a^2+b^2+c^2)}\le \sum{\frac{(b+c)^2+(b-c)^2}{2(b+c)}} \) sau

\( \sqrt{3(a^2+b^2+c^2)}-a-b-c\le\sum{\frac{(b-c)^2}{2(b+c)}} \)

sau \( \frac{(a-b)^2+(b-c)^2+(c-a)^2}{\sqrt{3(a^2+b^2+c^2)}+a+b+c}\le\sum{\frac{(b-c)^2}{2(b+c)}} \)

Intrucat \( \sqrt{3(a^2+b^2+c^2)}\ge a+b+c \) este suficient sa aratam ca \( \frac{(a-b)^2+(b-c)^2+(c-a)^2}{2(a+b+c)}\le\sum{\frac{(b-c)^2}{2(b+c)}} \)

ceea ce este echivalent cu

\( 0\le\sum{\frac{a}{b+c}(b-c)^2} \) care este adevarat.
Last edited by Marius Mainea on Tue Jan 27, 2009 8:16 pm, edited 1 time in total.
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

Iata o frumoasa si foarte tare extindere a inegalitatii propuse de tine. Curand iti voi oferi si demonstratia acestei generalizari.

\( \underline {\overline {\left\|\ \frac {b^2 + c^2}{b + c} + \frac {c^2 + a^2}{c + a} + \frac {a^2 + b^2}{a + b}\ \ge\ \sqrt {3\left(a^2 + b^2 + c^2\right)} + \frac {1}{2(a + b + c)^2}\cdot \left[a(b - c)^2 + b(c - a)^2 + c(a - b)^2\right]\ \right\|}}\ . \)

Urmareste aici si aici interesul manifestat de elevii/studentii "planetei" la aparitia acestei mici bijuterii.
Last edited by Virgil Nicula on Fri Jan 30, 2009 12:00 am, edited 3 times in total.
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Post by alex2008 »

A se vedea si aici.
. A snake that slithers on the ground can only dream of flying through the air.
Post Reply

Return to “Clasa a IX-a”