Inegalitatea 1

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Inegalitatea 1

Post by Cezar Lupu »

Fie \( a, b, c \) trei numere reale strict pozitive astfel incat \( a+b+c\geq\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \). Sa se arate ca
\( ab+bc+ca\geq 3 \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Post by Filip Chindea »

\( ab + bc + ca \le abc(a + b + c) = \frac{1}{3}\cdot 3((ab)(bc) + (bc)(ca) + (ca)(ab)) \le \)
\( \frac{1}{3} \cdot (ab + bc + ca)^2 \), de unde concluzia e imediata.
Life is complex: it has real and imaginary components.
Post Reply

Return to “Clasa a IX-a”