Prezint o generalizare a problemei 4 de la TMMATE 2008
Daca notam cu \( p(n) \) produsul cifrelor nenule ale lui \( n \) atunci demonstrati ca \( \sum_{i=1}^{10^k}p(i) \) este puterea \( k \) a unui numar natural.
La concurs problema a fost data pentru \( k=3 \).
Generalizare produs cifre
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Generalizare produs cifre
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
-
Adriana Nistor
- Pitagora
- Posts: 82
- Joined: Thu Aug 07, 2008 10:07 pm
- Location: Drobeta Turnu Severin, Mehedinti
Demonstram ca \( \sum_{i=1}^{10^k}p(i) = 46^k \)
Inductie: pentru \( k=1 \) evident \( \sum_{i=1}^{10} =46 \)
Pentru \( k=2 \) \( \sum_{i=1}^{100} =46+46+46*2+46*3+...+46*9=46(1+1+2+...+9)=
46*46= 46^2 \)
Presupunem ca pentru \( k=n \) propozitia "\( P(k): \sum_{i=1}^{10^k} = 46^k \) " e adevarata si demonstram propozitia pentru \( k=n+1 \).
\( \sum_{i=1}^{10^{(n+1)}} =46^n+46^n + 2*46^n+3*46^n+...+9*46^n=
(1+1+2+3+...+9)* 46^n=46*46^n=46^{(n+1)} \).
Deci suma data e puterea k a numarului 46,care e natural.
Inductie: pentru \( k=1 \) evident \( \sum_{i=1}^{10} =46 \)
Pentru \( k=2 \) \( \sum_{i=1}^{100} =46+46+46*2+46*3+...+46*9=46(1+1+2+...+9)=
46*46= 46^2 \)
Presupunem ca pentru \( k=n \) propozitia "\( P(k): \sum_{i=1}^{10^k} = 46^k \) " e adevarata si demonstram propozitia pentru \( k=n+1 \).
\( \sum_{i=1}^{10^{(n+1)}} =46^n+46^n + 2*46^n+3*46^n+...+9*46^n=
(1+1+2+3+...+9)* 46^n=46*46^n=46^{(n+1)} \).
Deci suma data e puterea k a numarului 46,care e natural.
-
Adriana Nistor
- Pitagora
- Posts: 82
- Joined: Thu Aug 07, 2008 10:07 pm
- Location: Drobeta Turnu Severin, Mehedinti
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact: