Inegalitate cu variabile subunitare
Moderators: Bogdan Posa, Laurian Filip
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Inegalitate cu variabile subunitare
Sa se demonstreze ca, daca \( a,b,c\in [0,1] \) atunci: \( \frac{1}{5-ab}+\frac{1}{5-bc}+\frac{1}{5-ca} \ge \frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{4} \).
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Re: Inegalitate cu variabile subunitare
Se arata ca
\( \frac{1}{5-bc}\ge \frac{\sqrt{b}+\sqrt{c}}{8} \)
\( \frac{1}{5-ca}\ge \frac{\sqrt{c}+\sqrt{a}}{8} \)
\( \frac{1}{5-ab}\ge \frac{\sqrt{a}+\sqrt{b}}{8} \) si apoi se aduna.
Intr-adevar \( (1-\sqrt{b})(1-\sqrt{c})\ge 0 \) deci \( \sqrt{b}+\sqrt{c}\le 1+\sqrt{bc} \)
si atunci \( \frac{\sqrt{b}+\sqrt{c}}{8}\le\frac{1+\sqrt{bc}}{8}\le \frac{1}{5-bc}\Longleftrightarrow (\sqrt{bc}-1)^2(\sqrt{bc}+3)\ge 0 \)
\( \frac{1}{5-bc}\ge \frac{\sqrt{b}+\sqrt{c}}{8} \)
\( \frac{1}{5-ca}\ge \frac{\sqrt{c}+\sqrt{a}}{8} \)
\( \frac{1}{5-ab}\ge \frac{\sqrt{a}+\sqrt{b}}{8} \) si apoi se aduna.
Intr-adevar \( (1-\sqrt{b})(1-\sqrt{c})\ge 0 \) deci \( \sqrt{b}+\sqrt{c}\le 1+\sqrt{bc} \)
si atunci \( \frac{\sqrt{b}+\sqrt{c}}{8}\le\frac{1+\sqrt{bc}}{8}\le \frac{1}{5-bc}\Longleftrightarrow (\sqrt{bc}-1)^2(\sqrt{bc}+3)\ge 0 \)
Last edited by Marius Mainea on Sat Jan 31, 2009 11:40 pm, edited 2 times in total.
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact: