0*infinit
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
- Andrei Ciupan
- Euclid
- Posts: 19
- Joined: Thu Sep 27, 2007 8:34 pm
0*infinit
Sa se calculeze (daca exista, si banuiesc ca exista) \( \displaystyle\lim_{n\mapsto \infty} n\left(\sqrt[n] n- \sqrt[n+1]{n+1} \right) \).
Andrei Ciupan.
- Radu Titiu
- Thales
- Posts: 155
- Joined: Fri Sep 28, 2007 5:05 pm
- Location: Mures \Bucuresti
Notez \( x_n =\frac{\sqrt[n+1]{n+1}}{\sqrt[n]{n}} \).
Avem \( \lim_{n\to\infty}x_n^n=\lim_{n\to\infty}(1+x_n-1)^n=\lim_{n\to\infty} e^{n(x_n-1)} \).
Dar \( \lim_{n\to\infty}x_n^n = \lim_{n\to\infty} \frac{\sqrt[n+1]{(n+1)^n}}{n}=1 \).
Atunci \( \lim_{n\to\infty}n(x_n-1)=0 \). Deci si limita cautata e 0.
Avem \( \lim_{n\to\infty}x_n^n=\lim_{n\to\infty}(1+x_n-1)^n=\lim_{n\to\infty} e^{n(x_n-1)} \).
Dar \( \lim_{n\to\infty}x_n^n = \lim_{n\to\infty} \frac{\sqrt[n+1]{(n+1)^n}}{n}=1 \).
Atunci \( \lim_{n\to\infty}n(x_n-1)=0 \). Deci si limita cautata e 0.
A mathematician is a machine for turning coffee into theorems.
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
Re: 0*infinit
Stim ca \( \lim_{n\to\infty }\ \sqrt[n]n=1 \) si \( \lim_{x\to 0}\ \frac {e^x-1}{x}=1\ , \) adica \( \left|\ \begin{array}{c}Virgil Nicula wrote:Sa se arate ca \( \displaystyle\lim_{n\to\infty}\ \frac {n^2}{\ln n}\cdot \left(\sqrt[n] n\ -\ \sqrt[n+1]{n+1} \right)\ =\ 1\ . \)
x_n\rightarrow 0\\\\
x_n\ne 0\ (\forall )\ n\in\mathbb N^*\end{array}\ \right|\ \Longrightarrow\ \lim_{n\to\infty}\ \frac {e^{x_n}-1}{x_n}=1\ . \)
\( L\equiv\ \lim_{n\to\infty }\ \frac {n^2}{\ln n}\cdot \left(\sqrt[n] n\ -\ \sqrt[n+1]{n+1} \right)=\lim_{n\to\infty}\ \frac {n^2}{\ln n}\ \cdot\ \sqrt[n+1]{n+1}\ \cdot\ \frac {e^{x_n}-1}{x_n}\ , \) unde \( x_n=\frac {(n+1)\ln n-n\ln (n+1)}{n(n+1)} \)
si \( x_n\ \rightarrow\ 0\ . \) Asadar, \( L=\lim_{n\to\infty }\ \frac {n^2}{\ln n}\cdot x_n=\lim_{n\to\infty }\ \frac {(n+1)\ln n-n\ln (n+1)}{\ln n}=\lim_{n\to\infty }\ \frac {\ln n-\ln\left(1+\frac 1n\right)^n}{\ln n}=1\ . \)
Consecinta. \( \lim_{n\to\infty}\ n\cdot \left(\sqrt[n] n\ -\ \sqrt[n+1]{n+1} \right)\ =\lim_{n\to\infty}\ \frac {\ln n}{n}\ \cdot\ \frac {n^2}{\ln n}\left(\sqrt[n] n\ -\ \sqrt[n+1]{n+1} \right)\ =0\ \cdot\ 1=\ 0\ . \)
Iată şi o generalizare dusă puţin dincolo de limita suportabilului
:
Să se arate că:
\(
\lim_{n\rightarrow \infty }n^{4}[(\sqrt[n]{n}-\sqrt[n+1]{n+1})-({\frac{\ln
(n)}{{n}^{2}}}-\frac{1}{n^{2}}+{\frac{(\ln (n))^{2}}{{n}^{3}}}-{\frac{2\ln
(n)}{{n}^{3}}+}\frac{3}{2n^{3}}+{\frac{(\ln (n))^{3}}{2{n}^{4}}}-{\frac{
2(\ln (n))^{2}}{{n}^{4}}+\frac{7\ln (n)}{2{n}^{4}}})]=-7/3
\)
Să se arate că:
\(
\lim_{n\rightarrow \infty }n^{4}[(\sqrt[n]{n}-\sqrt[n+1]{n+1})-({\frac{\ln
(n)}{{n}^{2}}}-\frac{1}{n^{2}}+{\frac{(\ln (n))^{2}}{{n}^{3}}}-{\frac{2\ln
(n)}{{n}^{3}}+}\frac{3}{2n^{3}}+{\frac{(\ln (n))^{3}}{2{n}^{4}}}-{\frac{
2(\ln (n))^{2}}{{n}^{4}}+\frac{7\ln (n)}{2{n}^{4}}})]=-7/3
\)
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
OFF-topic. Deci se poate si mai mult ?!aleph wrote:Iată şi o generalizare dusă puţin dincolo de limita suportabilului![]()
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
Alternativ, daca \( f(x)=x^{\frac1x} \), atunci limita este \( n(f(n)-f(n+1)) \), dar \( f(n)-f(n+1)=-f^{,}(c_n) \), cu \( c_n \in (n,n+1) \), din Lagrange. Cum evident \( \frac{c_n}{n} \rightarrow 1 \), ramane de calculat \( \displaystyle \lim_{x\to \infty}xf^{,}(x) \), adica \( \displaystyle \lim_{x\to \infty}e^{\frac{\ln x}{x}} \cdot \frac{1-\ln x}{x}=0 \)
Bogdan Enescu
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
Frumoasa demonstratie, dle Enescu ! Voi aplica ideea dvs. la sirul care
"satureaza" sirul initial, adica \( \overline {\underline{\left\|\ \displaystyle\lim_{n\to\infty}\ \frac {n^2}{\ln n}\cdot \left(\sqrt[n] n\ -\ \sqrt[n+1]{n+1} \right)\ =\ 1\ \right\|}}\ . \)
Functiei Rolle \( f(x)=x^{\frac 1x}\ ,\ x\in [n,n+1]\ ,\ n\in\mathbb N^* \) a carei functie-derivata este \( f^{\prim}(x)=x^{\frac 1x}\cdot\frac {1-\ln x}{x^2} \)
ii aplicam teorema Lagrange : exista \( n\ <\ c_n\ <\ n+1 \) astfel incat \( f(n+1)-f(n)=c_n^{\frac {1}{c_n}}\cdot\frac {1-\ln c_n}{c_n^2}\ . \)
Se observa ca \( c_n\rightarrow\infty \) , \( c_n^{\frac {1}{c_n}}\rightarrow 1 \) si \( \left\|\ \begin{array}{ccc}
\ln n\ <\ \ln c_n\ <\ \ln (n+1) & \Longrightarrow & \frac {\ln c_n}{\ln n}\rightarrow 1\\\\\\\\
\frac {n}{n+1}\ <\ \frac {n}{c_n}\ <\ 1 & \Longrightarrow & \frac {n}{c_n}\rightarrow 1\end{array}\ \right\|\ . \) Asadar,
\( \displaystyle\lim_{n\to\infty}\ \frac {n^2}{\ln n}\cdot \left(\sqrt[n] n\ -\ \sqrt[n+1]{n+1} \right)\ =-\displaystyle\lim_{n\to\infty}\ \frac {n^2}{\ln n}\cdot \left[f(n+1)-f(n)\right]=-\lim_{n\to\infty}\ c_n^{\frac {1}{c_n}}\cdot \left(\frac {n}{c_n}\right)^2\cdot\left(\frac {1}{\ln n}-\frac {\ln c_n}{\ln n}\right)=1\ . \)
"satureaza" sirul initial, adica \( \overline {\underline{\left\|\ \displaystyle\lim_{n\to\infty}\ \frac {n^2}{\ln n}\cdot \left(\sqrt[n] n\ -\ \sqrt[n+1]{n+1} \right)\ =\ 1\ \right\|}}\ . \)
Functiei Rolle \( f(x)=x^{\frac 1x}\ ,\ x\in [n,n+1]\ ,\ n\in\mathbb N^* \) a carei functie-derivata este \( f^{\prim}(x)=x^{\frac 1x}\cdot\frac {1-\ln x}{x^2} \)
ii aplicam teorema Lagrange : exista \( n\ <\ c_n\ <\ n+1 \) astfel incat \( f(n+1)-f(n)=c_n^{\frac {1}{c_n}}\cdot\frac {1-\ln c_n}{c_n^2}\ . \)
Se observa ca \( c_n\rightarrow\infty \) , \( c_n^{\frac {1}{c_n}}\rightarrow 1 \) si \( \left\|\ \begin{array}{ccc}
\ln n\ <\ \ln c_n\ <\ \ln (n+1) & \Longrightarrow & \frac {\ln c_n}{\ln n}\rightarrow 1\\\\\\\\
\frac {n}{n+1}\ <\ \frac {n}{c_n}\ <\ 1 & \Longrightarrow & \frac {n}{c_n}\rightarrow 1\end{array}\ \right\|\ . \) Asadar,
\( \displaystyle\lim_{n\to\infty}\ \frac {n^2}{\ln n}\cdot \left(\sqrt[n] n\ -\ \sqrt[n+1]{n+1} \right)\ =-\displaystyle\lim_{n\to\infty}\ \frac {n^2}{\ln n}\cdot \left[f(n+1)-f(n)\right]=-\lim_{n\to\infty}\ c_n^{\frac {1}{c_n}}\cdot \left(\frac {n}{c_n}\right)^2\cdot\left(\frac {1}{\ln n}-\frac {\ln c_n}{\ln n}\right)=1\ . \)