Etapa locala Caras-Severin 2008

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
User avatar
elena_romina
Euclid
Posts: 40
Joined: Sat Nov 15, 2008 12:15 pm

Etapa locala Caras-Severin 2008

Post by elena_romina »

Sa se rezolve in multimea numerelor reale ecuatia:
\( 2^{[x]}+2^{\{x\}}=2^{x+1} \).

Eu am aplicat inegalitatea mediilor:
\( 2^{[x]}+2^{\{x\}}\geq 2\sqrt{2^{[x]+\{x\}} \).
Dar \( 2^{[x]}+2^{\{x\}}=2^{x+1} \), rezulta ca
\( 2^{x+1}\geq 2\cdot {2^{\frac{x}{2}} \)
\( x \geq\frac {x}{2} \)
\( 2x\geq x=>2x-x\geq0=>x\geq0 \)
Asta inseamna ca ecuatia are ca solutie orice x\( \geq0 \)?
Dar 0 este solutie a ecuatiei, in timp ce 1 sau 2 nu sunt solutii.
Unde am gresit? :?:
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

Daca notezi \( a=2^{[x]} \) si \( b=2^{\{x\}} \) atunci din relatia din enunt ai \( a+b=2ab \). Adica \( 4ab-2a-2b+1=1 \Leftrightarrow (2a-1)(2b-1)=1 \). Si de aici stii sa o faci si singura :)

\( 2b-1>0 \rightarrow 2a-1>0 \). Pentru \( k \geq 0 \) avem
Daca \( [x]=k \Rightarrow 2^{\{x\}+1}-1=\frac{1}{2^{k+1}-1} \), adica \( \{x\}=\log_2 \ \frac{2^{k+1}}{2^{k+1}-1}-1 \) care e negativ pentru \( k\neq 0 \) si 0 pentru \( k=0 \). Deci \( x=0 \) e unica solutie.
Last edited by Beniamin Bogosel on Sat Feb 07, 2009 3:10 pm, edited 2 times in total.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
User avatar
elena_romina
Euclid
Posts: 40
Joined: Sat Nov 15, 2008 12:15 pm

Post by elena_romina »

Multumesc! Dar metoda mea de ce nu functioneaza? Gresesc undeva? :roll:
Last edited by elena_romina on Sat Feb 07, 2009 3:15 pm, edited 2 times in total.
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

pai la tine toate numerele pozitive verifica inegalitatea. Asta nu inseamna ca toate numerele pozitive verifica si egalitatea.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
User avatar
elena_romina
Euclid
Posts: 40
Joined: Sat Nov 15, 2008 12:15 pm

Post by elena_romina »

Da, gata, am inteles :D. Multumesc mult! :wink:
Post Reply

Return to “Clasa a X-a”