Inegalitate intre muchiile unui tetraedru tridreptunghic

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Inegalitate intre muchiile unui tetraedru tridreptunghic

Post by Claudiu Mindrila »

Se considera un tetraedru \( OABC \) in care \( OA\perp OB\perp OC\perp OA \). Aratati ca \( \frac{1}{OA}+\frac{1}{OB}+\frac{1}{OC}\ge\sqrt{2}\left(\frac{1}{AB}+\frac{1}{BC}+\frac{1}{CA}\right) \).

Cezar Lupu, lista scurta, 2005
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Notand OA=a , Ob=b , OC=c inegalitatea devine

\( \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge \sqrt{2}(\frac{1}{\sqrt{a^2+b^2}}+\frac{1}{\sqrt{b^2+c^2}}+\frac{1}{\sqrt{c^2+a^2}}) \)
Post Reply

Return to “Clasa a VIII-a”